用变上限积分表示的参数方程求导,内附题目和答案问一步骤?
1个回答
展开全部
32. t = 0 时,x = 1, y = 1.
x = t^3+2t+1, dx/dt = 3t^2+2; t = 0 时, dx/dt = 2。
t - ∫<1, y+t> e^(-u^2)du = 0, 两边对 t 求导,得
1 - (dy/dt+1)e^[-(y+t)^2] = 0, dy/dt = e^[(y+t)^2] - 1
t = 0 时,y = 1, dy/dt = e-1, dy/dx = (e-1)/2
dy/dx = {e^[(y+t)^2]-1}/(3t^2+2)
d^2y/dx^2 = [d(dy/dx)/dt]/(dx/dt)
= 【2(y+t)(dy/dt+1)e^[(y+t)^2](3t^2+2)-6t{e^[(y+t)^2]-1}】/(3t^2+2)^3
t = 0 时,y = 1, dy/dt = e-1, d^2y/dx^2 = (4e^2)/2^3 = e^2/2.
此处该书上用的公式:
d^2y/dx^2 = [(dx/dt)(d^2y/dt^2)-(d^2x/dt^2)(dy/dt)]/(dx/dt)^3
计算简单,但公式记忆复杂。
x = t^3+2t+1, dx/dt = 3t^2+2; t = 0 时, dx/dt = 2。
t - ∫<1, y+t> e^(-u^2)du = 0, 两边对 t 求导,得
1 - (dy/dt+1)e^[-(y+t)^2] = 0, dy/dt = e^[(y+t)^2] - 1
t = 0 时,y = 1, dy/dt = e-1, dy/dx = (e-1)/2
dy/dx = {e^[(y+t)^2]-1}/(3t^2+2)
d^2y/dx^2 = [d(dy/dx)/dt]/(dx/dt)
= 【2(y+t)(dy/dt+1)e^[(y+t)^2](3t^2+2)-6t{e^[(y+t)^2]-1}】/(3t^2+2)^3
t = 0 时,y = 1, dy/dt = e-1, d^2y/dx^2 = (4e^2)/2^3 = e^2/2.
此处该书上用的公式:
d^2y/dx^2 = [(dx/dt)(d^2y/dt^2)-(d^2x/dt^2)(dy/dt)]/(dx/dt)^3
计算简单,但公式记忆复杂。
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询