b的逆矩阵的行列式等于什么

 我来答
轮看殊O
高粉答主

2021-11-05 · 说的都是干货,快来关注
知道大有可为答主
回答量:2.6万
采纳率:99%
帮助的人:748万
展开全部

两个都是充要条件。

如果矩阵A可逆,|A|不等于零。

如果矩阵A不可逆,|A|=0。

若A为可逆阵,那么有:

A*A-1=E

两边取行列式有:

|A*A-1|=|E|=1

而左边有|A*A-1|=|A|*|A-1|=1≠0,所以|A|≠ 0。

证毕。



性质:


①行列式A中某行(或列)用同一数k乘,其结果等于kA。


②行列式A等于其转置行列式AT(AT的第i行为A的第i列)。


③若n阶行列式|αij|中某行(或列);行列式则|αij|是两个行列式的和,这两个行列式的第i行(或列),一个是b1,b2,…,bn;另一个是с1,с2,…,сn;其余各行(或列)上的元与|αij|的完全一样。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式