已知:如图,在梯形ABCD中,AD//BC,AB=DC.。点E、F、G分别在边AB、BC、CD上,AE=GF=GC
1.求证:四边形AEFG是平行四边形2.当∠FGC=2∠EFB时,求证:四边形AEFG是矩形请下下过程,最好是让我看得懂点的...
1.求证:四边形AEFG是平行四边形
2.当∠FGC=2∠EFB时,求证:四边形AEFG是矩形
请下下过程,最好是让我看得懂点的 展开
2.当∠FGC=2∠EFB时,求证:四边形AEFG是矩形
请下下过程,最好是让我看得懂点的 展开
展开全部
1、
已知,AD ‖ BC,AB = DC,
可得:梯形ABCD是等腰梯形,
则有:∠B = ∠C 。
因为,GF = GC ,
所以,∠C = ∠GFC ,
可得:∠B = ∠GFC ,
所以,AE ‖ GF ,
而且,AE = GF ,
可得:四边形AEFG是平行四边形。
2、
在△GFC中,∠FGC+∠GFC+∠C = 180°,
因为,∠FGC = 2∠EFB ,∠GFC = ∠C ,
可得:2∠EFB + 2∠GFC = 180°,
即有:∠EFB + ∠GFC = 90°,
所以,∠EFG = 180°-(∠EFB + ∠GFC) = 90°,
而且,四边形AEFG是平行四边形,
可得:四边形AEFG是矩形。
已知,AD ‖ BC,AB = DC,
可得:梯形ABCD是等腰梯形,
则有:∠B = ∠C 。
因为,GF = GC ,
所以,∠C = ∠GFC ,
可得:∠B = ∠GFC ,
所以,AE ‖ GF ,
而且,AE = GF ,
可得:四边形AEFG是平行四边形。
2、
在△GFC中,∠FGC+∠GFC+∠C = 180°,
因为,∠FGC = 2∠EFB ,∠GFC = ∠C ,
可得:2∠EFB + 2∠GFC = 180°,
即有:∠EFB + ∠GFC = 90°,
所以,∠EFG = 180°-(∠EFB + ∠GFC) = 90°,
而且,四边形AEFG是平行四边形,
可得:四边形AEFG是矩形。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询