帮忙看下这道二重积分计算题目 急需谢谢~
2个回答
展开全部
∫<0,π/2>dx∫<cosx,1>(y^4)dy
=(1/5)∫<0,π/2>[1-(cosx)^5]dx
=(1/5)[∫<0,π/2>dx-∫<0,π/2>(1-sin²x)²d(sinx)]
=(π/10)-(1/5)∫<0,π/2>[1-2sin²x+(sinx)^4]d(sinx)
=(π/10)-(1/5)[sinx-(2/3)sin³x+(1/5)(sinx)^5]<0,π/2>
=(π/10)-(1/5)[1-(2/3)+(1/5)]=(π/10)-(1/5)×(8/15)=(π/10)-(8/75);
=(1/5)∫<0,π/2>[1-(cosx)^5]dx
=(1/5)[∫<0,π/2>dx-∫<0,π/2>(1-sin²x)²d(sinx)]
=(π/10)-(1/5)∫<0,π/2>[1-2sin²x+(sinx)^4]d(sinx)
=(π/10)-(1/5)[sinx-(2/3)sin³x+(1/5)(sinx)^5]<0,π/2>
=(π/10)-(1/5)[1-(2/3)+(1/5)]=(π/10)-(1/5)×(8/15)=(π/10)-(8/75);
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询