求椭圆方程 。。。急急急
已知椭圆ax2+by2=1与直线x+y-1=0交于A,B两点,AB=2√2,AB的中点M与椭圆中心连线的斜率是√2/2,求a,b的值....
已知椭圆ax2+by2=1与直线x+y-1=0交于A,B两点,AB=2√2,AB的中点M与椭圆中心连线的斜率是√2/2,求a,b的值.
展开
展开全部
设A(x1,y1),B(x2,y2)
联立ax²+by²=1和x+y-1=0消去y有:
ax²+b(1-x)²=1
(a+b)x²-2bx+b-1=0
∴x1+x2=2b/(a+b),x1x2=(b-1)/(a+b)
AB=√[(x1-x2)²+(y1-y2)²]=√[(x1-x2)²+(1-x1-1+x2)²]=√[2(x1-x2)²]=√2[(x1+x2)²-4x1x2]=√2[(2b/(a+b))²-(4*(b-1)/(a+b))]
又∵AB=2√2
∴(b/(a+b))²- (b-1)/(a+b))=1;。。。。。。。。1
又x1+x2=2b/(a+b)
y1+y2=(1-x1)+(1-x2)=2-(x1+x2)=2 -[2b/(a+b)]=2a/(a+b)
∵M为AB中点,∴M坐标为:((x1+x2)/2,(y1+y2)/2)=(b/(a+b),a/(a+b))
又OM斜率为√2/2
∴[b/(a+b)]/[a/(a+b)]=√2/2
∴b/a=√2/2,a=√2b代入1式样有:
(b/(√2b+b))²- (b-1)/(√2b+b))=1
解:b=
1和2式解得:a=√2/3,b=1/3
联立ax²+by²=1和x+y-1=0消去y有:
ax²+b(1-x)²=1
(a+b)x²-2bx+b-1=0
∴x1+x2=2b/(a+b),x1x2=(b-1)/(a+b)
AB=√[(x1-x2)²+(y1-y2)²]=√[(x1-x2)²+(1-x1-1+x2)²]=√[2(x1-x2)²]=√2[(x1+x2)²-4x1x2]=√2[(2b/(a+b))²-(4*(b-1)/(a+b))]
又∵AB=2√2
∴(b/(a+b))²- (b-1)/(a+b))=1;。。。。。。。。1
又x1+x2=2b/(a+b)
y1+y2=(1-x1)+(1-x2)=2-(x1+x2)=2 -[2b/(a+b)]=2a/(a+b)
∵M为AB中点,∴M坐标为:((x1+x2)/2,(y1+y2)/2)=(b/(a+b),a/(a+b))
又OM斜率为√2/2
∴[b/(a+b)]/[a/(a+b)]=√2/2
∴b/a=√2/2,a=√2b代入1式样有:
(b/(√2b+b))²- (b-1)/(√2b+b))=1
解:b=
1和2式解得:a=√2/3,b=1/3
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询