如何证明柯西不等式的积分形式?
比较常用的是判别式法。
构造$(f(x)-tg(x))^2>=0展开后关于t的二次函数利用判别式<=0得证
设f(x),g(x)在区间[a,b]可积,a≤b
∵对任意t∈R,有(tf(x)-g(x))²≥0
=>∫[a,b](tf(x)-g(x))²dx≥0
=>t²∫[a,b]f²(x)dx-2t∫[a,b]f(x)g(x)dx+∫[a,b]g²(x)dx≥0
记A=∫[a,b]f²(x)dx,B=2∫[a,b]f(x)g(x)dx,C=∫[a,b]g²(x)dx
则上式变为At²-Bt+C≥0,对任意t∈R成立
∴该二次函数判别式△=B²-4AC≤0
即(∫[a,b]f(x)g(x)dx)²≤(∫[a,b]f²(x)dx)(∫[a,b]g²(x)dx)
注:这里若a>b,该积分不等式也成立,只需把a,b交换证明即可。
扩展资料:
①如果x>y,那么y<x;如果y<x,那么x>y;(对称性)
②如果x>y,y>z;那么x>z;(传递性)
③如果x>y,而z为任意实数或整式,那么x+z>y+z;(加法原则,或叫同向不等式可加性)
④ 如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz<yz;(乘法原则)
⑤如果x>y,m>n,那么x+m>y+n;(充分不必要条件)
⑥如果x>y>0,m>n>0,那么xm>yn;
⑦如果x>y>0,xn>yn(n为正数),xn<yn(n为负数);
参考资料来源:百度百科-不等式