假设检验中的P值怎样计算呢?

统计学中假设检验的P值计算的原理是什么呢?要怎样计算出来呢?(求最好举个计算题例子)... 统计学中假设检验的P值计算的原理是什么呢?要怎样计算出来呢?(求最好举个计算题例子) 展开
 我来答
赖马特22

2021-11-26 · TA获得超过1008个赞
知道答主
回答量:5802
采纳率:38%
帮助的人:187万
展开全部
P值的计算:
一般地,用X 表示检验的统计量,当H0为真时,可由样本数据计算出该统计量的值C,根据检验统计量X的具体分布,可求出P值。具体地说:
左侧检验的P值为检验统计量X 小于样本统计值C 的概率,即:P = P{ X < C}
右侧检验的P值为检验统计量X 大于样本统计值C 的概率:P = P{ X > C}
双侧检验的P值为检验统计量X 落在样本统计值C 为端点的尾部区域内的概率的2 倍:P = 2P{ X > C} (当C位于分布曲线的右端时) 或P = 2P{ X< C} (当C 位于分布曲线的左端时) 。若X 服从正态分布和t分布,其分布曲线是关于纵轴对称的,故其P 值可表示为P = P{| X| > C} 。
p值的计算公式:
=2[1-φ(z0)]
当被测假设h1为
p不等于p0时;
=1-φ(z0)
当被测假设h1为
p大于p0时;
=φ(z0)
当被测假设h1为
p小于p0时;
其中,φ(z0)要查表得到。
z0=(x-n*p0)/(根号下(np0(1-p0)))
最后,当p值小于某个显著参数的时候我们就可以否定假设。反之,则不能否定假设。
注意,这里p0是那个缺少的假设满意度,而不是要求的p值。
没有p0就形不成假设检验,也就不存在p值
统计学上规定的p值意义:
p值
碰巧的概率
对无效假设
统计意义
p>0.05
碰巧出现的可能性大于5%
不能否定无效假设两组差别无显著意义
p<0.05
碰巧出现的可能性小于5%
可以否定无效假设
两组差别有显著意义
p
<0.01
碰巧出现的可能性小于1%
可以否定无效假设
两者差别有非常显著意义
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式