在△ABC中,角A,B,C的对边分别为a,b,c,若A=60°,a=√3,则(b+c)/(sinB+sinC)
展开全部
由正弦定理:
a/sina=c/sinc
a/c=sina/sinc,两边同时乘以2cosb,左边分子分母同乘以c.得:
2ac*cosb/c²=2sinacosb/sinc.
由余弦定理a²+c²-b²=2ac*cosb得:
(a²+c²-b²)/c²=2sinacosb/sinc
两边同时减去1,可得:
(a²-b²)/c²=(2sinacosb-sinc)/sinc
且有2sinacosb-sinc=2sinacosb-sin(a+b)
=2sinacosb-(sinacosb+cosasinb)
=sinacosb-cosasinb
=sin(a-b)
则原式得证.
a/sina=c/sinc
a/c=sina/sinc,两边同时乘以2cosb,左边分子分母同乘以c.得:
2ac*cosb/c²=2sinacosb/sinc.
由余弦定理a²+c²-b²=2ac*cosb得:
(a²+c²-b²)/c²=2sinacosb/sinc
两边同时减去1,可得:
(a²-b²)/c²=(2sinacosb-sinc)/sinc
且有2sinacosb-sinc=2sinacosb-sin(a+b)
=2sinacosb-(sinacosb+cosasinb)
=sinacosb-cosasinb
=sin(a-b)
则原式得证.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询