已知A是m*n的实矩阵,证明r(ATA)=r(A) AT是矩阵A的转置

 我来答
一袭可爱风1718
2022-06-18 · TA获得超过1.3万个赞
知道大有可为答主
回答量:6698
采纳率:99%
帮助的人:38.6万
展开全部
构造两个齐次线性方程组:
(1)Ax=0, (2)(AT A)x=0
如果这两个方程组同解,则两个方程组的系数矩阵有相同的秩,R(A)=R(AT A)=n-基础解系中向量个数.
这个很好理解对吧,《线性代数》的基本内容.
现在来证明它们同
首先,如果x1是(1)的解,那么它肯定也是(2)的解,因为将其代入(2):
(AT A)x1=AT (Ax1)=AT *0=0
其次证明(2)的解也是(1)的
设x1是(2)的解,则AT A x1=0
进一步有:x1T AT A x1=0
即(Ax1)T (Ax1)=0
假设Ax1=[a1,a2,...,an]T
则(Ax1)T(Ax1)=0就是a1^2+a2^2+...+an^2=0
那么只有a1=a2=...=an=0
也就是Ax1=0
至此说明了(2)的解也是(1)的解.
于是R(A)=R(AT A)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式