AB均是n阶可逆方阵,证明(AB)^-1=B^-1A^-1
1个回答
展开全部
A,B可逆,所以A逆,B逆存在,故B逆A逆是一个n阶方阵.
直接验证:(B逆A逆)*AB=B逆*(A逆*A)*B=B逆*B=I(单位阵).类似的,AB*(B逆A逆)=I.
由逆矩阵的定义,B逆A逆正是AB的逆矩阵.
直接验证:(B逆A逆)*AB=B逆*(A逆*A)*B=B逆*B=I(单位阵).类似的,AB*(B逆A逆)=I.
由逆矩阵的定义,B逆A逆正是AB的逆矩阵.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询