x趋近于o(e的tanx次方减e的x次方)与x的k次方是同阶无穷小,求K的值
展开全部
x趋近于0,lim[(e^tanx-e^x)/(x^k)]
=lim{e^x*[(e^(tanx-x)-1]/x^k}
=lim [e^(tanx- x)/x^k]
=lim(tanx- x)/x^k
=lim{[sec(x)]^2-1}/(kx^(k-1))
=lim(tanx)^2/(kx^(k-1))
=lim [x^2/(kx^(k-1))]
2=k-1,k = 3
写得比较详细,具体做时可以简写
若熟悉x趋近于0,tanx- x 等价于 (1/3)x^3 (泰勒级数展开)
=lim(tanx- x)/x^k = (1/3)limx^(3-k)=常数 ,k=3
=lim{e^x*[(e^(tanx-x)-1]/x^k}
=lim [e^(tanx- x)/x^k]
=lim(tanx- x)/x^k
=lim{[sec(x)]^2-1}/(kx^(k-1))
=lim(tanx)^2/(kx^(k-1))
=lim [x^2/(kx^(k-1))]
2=k-1,k = 3
写得比较详细,具体做时可以简写
若熟悉x趋近于0,tanx- x 等价于 (1/3)x^3 (泰勒级数展开)
=lim(tanx- x)/x^k = (1/3)limx^(3-k)=常数 ,k=3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询