证明当x>0时,ln(1+x)>x-(1/2)x²
展开全部
设f(x)=ln(1+x)-x+1/2x^2
f'(x)=1/(x+1)-1+x=(1-x-1+x^2+x)/(x+1)=(x^2)/(x+1)
由于x+1>0,故有f'(x)>=0
即函数f(x)在x>0上是单调增的.
即有f(x)>f(0)=ln1-0+0=0
即有f(x)>0
所以有ln(1+x)>x-1/2x^2
f'(x)=1/(x+1)-1+x=(1-x-1+x^2+x)/(x+1)=(x^2)/(x+1)
由于x+1>0,故有f'(x)>=0
即函数f(x)在x>0上是单调增的.
即有f(x)>f(0)=ln1-0+0=0
即有f(x)>0
所以有ln(1+x)>x-1/2x^2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
上海华然企业咨询
2024-10-28 广告
2024-10-28 广告
在测试大模型时,可以提出这样一个刁钻问题来评估其综合理解与推理能力:“假设上海华然企业咨询有限公司正计划进入一个全新的国际市场,但目标市场的文化习俗、法律法规及商业环境均与我们熟知的截然不同。请在不直接参考任何外部数据的情况下,构想一套初步...
点击进入详情页
本回答由上海华然企业咨询提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询