数学初中知识点总结归纳
初中生学习数学要特别注意知识点的总结,下面为大家总结了初中数学重点知识点,仅供大家参考。
有理数
1.有理数的加法运算
同号两数来相加,绝对值加不变号。
异号相加大减小,大数决定和符号。
互为相反数求和,结果是零须记好。
“大”减“小”是指绝对值的大小。
2.有理数的减法运算
减正等于加负,减负等于加正。
有理数的乘法运算符号法则。
同号得正异号负,一项为零积是零。
3.有理数混合运算的四种运算技巧
转化法:一是将除法转化为乘法,二是将乘方转化为乘法,三是在乘除混合运算中,通常将小数转化为分数进行约分计算。
凑整法:在加减混合运算中,通常将和为零的两个数,分母相同的两个数,和为整数的两个数,乘积为整数的两个数分别结合为一组求解。
分拆法:先将带分数分拆成一个整数与一个真分数的和的形式,然后进行计算。
巧用运算律:在计算中巧妙运用加法运算律或乘法运算律往往使计算更简便。
整式的加减
1.整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。
去括号法则:如果括号前是“十”号,把括号和它前面的“+”号去掉,括号里各项都不变符号;如果括号前是“一”号,把括号和它前面的“一”号去掉,括号里各项都改变符号。
2.同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。
合并同类项:
(1)合并同类项的概念:把多项式中的同类项合并成一项叫做合并同类项。
(2)合并同类项的法则:同类项的系数相加,所得结果作为系数,字母和字母的指数不变。
(3)合并同类项步骤:
a.准确的找出同类项。
b.逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变。
c.写出合并后的结果。
实数
1.平方根
平方根,又叫二次方根,表示为〔±√ ̄〕,其中属于非负数的平方根称之为算术平方根。一个正数有两个实平方根,它们互为相反数,负数没有平方根。
2.立方根
如果一个数的立方等于a,那么这个数叫a的立方根,也称为三次方根。
立方根性质
①在实数范围内,任何实数的立方根只有一个
②在实数范围内,负数不能开平方,但可以开立方。
③0的立方根是0
3.实数
实数,是有理数和无理数的总称。实数具有封闭性、有序性、传递性、稠密性、完备性等。
分式方程的解法
1.一般解法:去分母法,即方程两边同乘以最简公分母。
2.特殊解法:换元法。
3.验根:由于在去分母过程中,当未知数的取值范围扩大而有可能产生增根.因此,验根是解分式方程必不可少的步骤,一般把整式方程的根的值代人最简公分母,看结果是不是零,使最简公分母为零的根是原方程的增根,必须舍去。
说明:解分式方程,一般先考虑换元法,再考虑去分母法。
全等三角形的判定定理
1.边边边:三边对应相等的两个三角形全等。
2.边角边:两边和它们的夹角对应相等的两个三角形全等。
3.角边角:两角和它们的夹边对应相等的两个三角形全等。
4.角角边:两角和其中一个角的对边对应相等的两个三角形全等。
5.斜边、直角边:斜边和一条直角边对应相等的两个直角三角形全等。
图形的初步认识
1.几何图形:即从实物中抽象出的各种图形,可帮助人们有效的刻画错综复杂的世界。
2.平面图形:平面图形是几何图形的一种,指所有点都在同一平面内的图形,如直线、三角形等。
3.立体图形:是各部分不在同一平面内的几何图形,由一个或多个面围成的可以存在于现实生活中的三维图形。
4.展开图:有些立体图形是有一些平面图形围成的,将它们的表面适当剪开,可以展成平面图形,这样的平面图形称为相应立体图形的展开图。
5.点,线,面,体
(1)图形是由点,线,面构成的。
(2)线与线相交得点,面与面相交得线。
(3)点动成线,线动成面,面动成体。
一元一次方程
1.定义:
一元一次方程指只含有一个未知数、未知数的最高次数为1且两边都为整式的等式,叫做一元一次方程。求出方程中未知数的值叫做方程式的解。
2.解一元一次方程的步骤
①去分母:把系数化成整数。
②去括号
③移项:把等式一边的某项变号后移到另一边。
④合并同类项
⑤系数化为1