线性方程组(九)- 线性变换的矩阵

 我来答
天罗网17
2022-05-31 · TA获得超过6190个赞
知道小有建树答主
回答量:306
采纳率:100%
帮助的人:73.2万
展开全部

的两列是 和 ,设 是 到 的线性变换,满足 。求出 中任意向量 的像的公式。
解:

因为 是线性变换,所以:

定理 设 为线性变换,则存在唯一的矩阵 ,使得对 中一切 , 。事实上, 是 矩阵,它的第 列是向量 ,其中 是 中单位矩阵 的第 列:
证:

由于 是线性变换,所以:

其中矩阵 称为 线性变换的标准矩阵

由 到 的每个线性变换都可看作是 矩阵变换 ,反之亦然。术语线性变换强调映射的性质,而矩阵变换描述这样的映射如何实现。

设 为把 中每一个点绕原点逆时针正角度 的变换。我们可以从几何上证明这个变换是线性变换。求出这个变换的标准矩阵。

解: 旋转成为 , 旋转成为 。

对称变换

收缩与拉伸

剪切变换

投影

映射 称为到 上的映射,若 中每个 是 中至少一个 的像。(也称为满射)
等价地,当 的值域是整个余定义域 时, 是到 上的映射。也就是说,若对 中每个 ,方程 至少有一个解。

映射 称为到 上的一对一映射,若 中每个 是 中至多一个 的像。(也称为单射)
等价地, 是到 上的一对一映射,若对 中每个 ,方程 有唯一的解或没有解。
上面的表格中,投影不是一对一映射,也不能将 映上到 ;其他(对称变换、收缩与拉伸、剪切变换)都是一对一映射,也能将 映上到 。

设 是线性变换,它的标准矩阵为 。 会否把 映上到 ? 是否是一对一映射?
解:因为 已经是阶梯形矩阵,可立即看出, 在每一行有主元位置,对 中每个 ,方程 相容。也就是说,线性变换 能将 映射到 上。然而因为方程 有一个自由变量,每个 都有多个 的像。所以 不是一对一映射。

设 是线性变换, 为 的标准矩阵,则

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
富港检测技术(东莞)有限公司_
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发... 点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式