y'+y=e^x 求一阶线性微分方程的通解! 用常数变易法求解! 我来答 1个回答 #热议# 空调使用不当可能引发哪些疾病? 大沈他次苹0B 2022-06-07 · TA获得超过7338个赞 知道大有可为答主 回答量:3059 采纳率:100% 帮助的人:179万 我也去答题访问个人页 关注 展开全部 设y=C(x)e^(-∫dx)=C(x)e^(-x) 代入原微分方程 C‘(x)e^(-x)-C(x)e^(-x)+C(x)e^(-x)=e^x C‘(x)e^(-x)=e^x C‘(x)=e^(2x) C(x)=∫e^(2x)dx=(1/2)e^(2x)+C 所以原微分方程的通解为 y=[(1/2)e^(2x)+C]e^(-x)=(1/2)e^(x)+Ce^(-x),C∈R 已赞过 已踩过< 你对这个回答的评价是? 评论 收起 推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询 为你推荐: