已知:关于x的方程x2+(4k+1)x+2k-1=0 ⑴求证:此方程一定有两个不相等的实数根; ⑵若x1,x2是方程的两实数

已知:关于x的方程x2+(4k+1)x+2k-1=0⑴求证:此方程一定有两个不相等的实数根;⑵若x1,x2是方程的两实数根,且(x1-2)(x2-2)=2k-3,求k值... 已知:关于x的方程x2+(4k+1)x+2k-1=0
⑴求证:此方程一定有两个不相等的实数根;
⑵若x1,x2是方程的两实数根,且(x1-2)(x2-2)=2k-3,求k值
展开
卢坤123456
高粉答主

2010-10-13 · 关注我不会让你失望
知道大有可为答主
回答量:3万
采纳率:79%
帮助的人:5796万
展开全部
证明:(1) 要证 方程一定有两个不相等的实数根
只需证δ>0即可
只需证(4k+1)2-4×1×(2k-1)=16k2+16k+1-8k+4
=16k2+8k+1+4=(4k+1)2+4 因为(4k+1)≥0.所以4k+1)2+4>0
所以方程一定有两个不相等的实数根

(2)方程有两不等实根x1,x2,
根据根与系数的关系有
x1+x2=-b/a=-4k-1, x1×x2=c/a=2k-1
(x1-2)(x2-2)=2k-3 去括号得
x1×x2-2×(x1+x2)+4=2k-3
2k-1-2(-4k-1)+4=2k-3
所以2k-1+8k+2+4=2k-3
所以k=-1
jian32feng1
2010-10-13 · TA获得超过3212个赞
知道小有建树答主
回答量:1086
采纳率:0%
帮助的人:907万
展开全部
diat=(4k+1)^2-4(2k-1)=16k^2+5>=5>0
所以此方程一定有两个不相等的实数根;
x1+x2=-(4k+1)
x1x2=2k-1
(x1-2)(x2-2)=x1x2-2(x1+x2)+4=2k-3
2k-1+2(4k+1)+4=2k-3
k=-1
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
sukishana
2010-10-13 · TA获得超过318个赞
知道小有建树答主
回答量:295
采纳率:0%
帮助的人:239万
展开全部
1.△=(4k+1)^2-4(2k-1)=4k^2+8>0
所以有不等实数根
2.x1+x2=-4k-1
x1x2=2k-1
(x1-2)(x2-2)=x1x2-2(x1+x2)+4=2k-1+2*(4k+1)+4=2k-3
k=-1
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
asd20060324
2010-10-13 · TA获得超过5.4万个赞
知道大有可为答主
回答量:1.8万
采纳率:62%
帮助的人:8744万
展开全部
判别式=16k^2+8k+1-8k+4>0

(x1-2)(x2-2)=x1x2-2(x1+x2)+4=2k-1+8k+2=10k+1

10k+1=2k-3 k=1/4
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式