初一数学上册月考试卷
一、选择题:(每题4分,共48分)
1.﹣3的倒数是( )
A.﹣ B. C.﹣3 D.3
2.如图为我县十二月份某一天的天气预报,该天最高气温比最低气温高( )
A.﹣3℃ B.7℃ C.3℃ D.﹣7℃
3.某服装店新开张,第一天销售服装a件,第二天比第一天多销售12件,第三天的销售量是第二天的2倍少10件,则第三天销售了( )
A.(2a+2)件 B.(2a+24)件 C. (2a+10)件 D.(2a+14)件
4.下列各式计算正确 的是( )
A.﹣2a+5b=3ab B.6a+a=6a2
C.4m2n﹣2mn2=2mn D.3ab2﹣5b2a=﹣2ab2
5.已知代数式3x2﹣6x+6的值为9,则代数式x2﹣2x+8的值为( )
A.18 B.9 C.12 D.7
6.定义一种新运算“*”,规定:a*b= a﹣4b,则12*(﹣1)=( )
A.﹣8 B.8 C.﹣12 D.11
7.已知x=﹣2是方程ax+4x=2的解,则a的值是( )
A.﹣5 B.3 C.5 D.﹣3
8.如果A、B、C三点在同一直线上,线段AB=3cm,BC=2cm,那么A、C两点之间的距离为( )
A.1cm B.5cm C.1cm或5cm D.无法确定
9.下列事实可以用“两点确定一条直线” 来解释的有( )个
①墙上钉木条至少要两颗钉子才能牢固;
②农民拉绳播秧;
③解放军叔叔打靶瞄准;
④从A地到B地架设电线,总是尽可能沿着线段AB架设.
A.1 B.2 C.3 D.4
10.在灯塔O处观测到轮船A位 于北偏西54°的方向,同时轮船B在南偏东15°的方向,那么∠AOB的大小为( )
A.69° B.111° C.141° D.159°
11.如图,AB是直线,O是直线上一点,OC、OD是两条射线,则图中小于平角的角有( )
A.3个 B.4个 C.5个 D.6个
12.如图是一个正方体包装盒的表面展开图,若在其中的三个正方形A,B,C内分别填上适当的数,使得将这个表面展开图沿虚线折成正方体后,相对面上的两数互为相反数,则填在A,B,C内的三个数依次是( )
A.1,0,﹣2 B.0,1,﹣2 C.0,﹣2,1 D.﹣2,0,1
二、填空题:(每空4分,共40分)
13.若3a4bm+1=﹣ a3n﹣2b2是同类项,则m﹣n= .
14.已知A点在数轴上对应有理数a,现将A右移5个单位长度后再向左移7个单位长度到达B点,B点在数轴上对应的有理数为 ,则有理数a= .
15.计算21°49′+49°21′= .
16.一件服装标价200元,以6折销售,可获利20%,这件服装的进价是 元.
17.若关于x的方程k(x2+1)+x2=x|k|+3为一元一次方程,那么k= .
18.已知OC平分∠AOB,若∠AOB=60°,∠COD=10°,则∠AOD的度数为 .
19.地球上的陆地面积约为149000000平方千米,这个数字用科学记数法表示应为 .
20.在看中央电视台“动物世界”节目时,我们可以看到这样的画面:非洲雄狮在广阔的草原上捕食鹿时,总是沿直线狂奔,其中蕴含的数学知识是 .
21.假设有足够多的黑白围棋子,按照一定的规律排成一行:
请问第2010个棋子是黑的还是白的?答: .
22.下列说法中:①若ax=ay,则x=y(其中a是有理数);②若 ,则a<0;③代数式﹣3a+10b+3a﹣10b﹣2的值与a,b都无关;④当x=3时,代数式1+(3﹣x)2有最大值l;⑤若|a|=|﹣9|,则a=﹣9.其中正确的是: (填序号)
三.综合题(62分)
23.计算:
(1)﹣4﹣28﹣(﹣29)+(﹣24)
(2)﹣32﹣|﹣6|﹣3×(﹣ )+(﹣2)2÷
(3)2(a2﹣ab)﹣2a2+3ab.
24.若|a+2|+(2b﹣4)2=0,求代数式4(a2b+ab2)﹣2(2a2b﹣1)﹣(2ab2+a2)+2的值.
25.解方程
(1)4x﹣1 =x+2
(2) .
26.a,b,c三个数在数轴上的位置如图所示,化简:|a﹣b|﹣|a+c|﹣|c﹣b|.
27.如图,D是AB的中点,E是BC的中点,BE= AC=3cm,求线段DE的长.
28.如图,∠AOB=∠COD=90°,OC平分∠AOB,∠BOD=3∠DOE.试求∠COE的度数.
29.小明家离学校5千米,放学后,爸爸从家里出发去学校接小明,与此同时小明从学校出发往家走,已知爸爸的速度是6千米/小时,小明的速度是4千米/小时.
(1)爸爸与小明相遇时,爸爸走了多少时间?
(2)若小明出发20分钟后发现书本忘带了,立刻转身以8千米/小时的速度返回学校拿到书本后仍以此速度继续往家走.请问爸爸与小明相遇时,离学校还有多远?(不计途中耽搁)
答案解析:
一、选择题:(每题4分,共48分)
1.﹣3的倒数是( )
A.﹣ B. C.﹣3 D.3
【分析】根据倒数的定义,若两个数的乘积是1,我们就称这两个数互为倒数.
【解答】解:∵﹣3×(﹣ )=1,
∴﹣3的倒数是﹣ .
故选:A.
2.如图为我县十二月份某一天的天气预报,该天最高气温比最低气温高( )
A.﹣3℃ B.7℃ C.3℃ D.﹣7℃
【分析】根据所给图可知该天的最高气温为5℃,最低气温为﹣2℃,继而作差求解即可.
【解答】解:根据所给图可知该天的最高气温为5℃,最低气温为﹣2℃,
故该天最高气温比最低气温高5﹣(﹣2)=7℃,
故选B.
3.某服装店新开张,第一天销售服装a件,第二天比第一天多销售1 2件,第三天的销售量是第二天的2倍少10件,则第三天销售了( )
A.(2a+2)件 B.(2a+24)件 C.(2a+10)件 D.(2a+14)件
【分析】此题要根据题意直接列出代数式,第三天的销售量=(第一天的销售量+12)×2﹣10.
【解答】解:第二天销售服装(a+12)件,第三天的销售量2(a+12)﹣10=2a+14(件),故选D.
4.下列各式计算正确的是( )
A.﹣2a+5b=3ab B.6a+a=6a2
C.4m2n﹣2mn2=2mn D.3ab2﹣5b2a=﹣2ab2
【分析】本题考查同类项的概念,含有相同的字母,并且相同字母的指数相同,是同类项的两项可以合并,否则不能合并. 合并同类项的法则是系数相加作为系数,字母和字母的指数不变.
【解答】解:解:A、﹣2a+5b不是同类项,不能合并.错误;
B、6a+a=7a,错误;
C、4m2n﹣2mn2不是同类项,不能合并.错误;
D、3ab2﹣5b2a=﹣2ab2.正确.
故选D.
5.已知代数式3x2﹣6x+6的值为9,则代数式x2﹣2x+8的值为( )
A.18 B.9 C.12 D.7
【分析】将x2﹣2x当成一个整体, 在第一个代数式中可求得x2﹣2x=1,将其代入后面的代数式即能求得结果.
【解答】解:∵3x2﹣6x+6=9,即3(x2﹣2x)=3,
∴x2﹣2x=1,
∴x2﹣2x+8=1+8=9.
故选B.
6.定义一种新运算“*”,规定:a*b= a﹣4b,则12*(﹣1)=( )
A.﹣8 B.8 C.﹣12 D.11
【分析】按照规定的运算顺序,列出算式按照运算顺序计算即可.
【解答】解:12*(﹣1)
= ×12﹣4×(﹣1)
=4+4
=8.
故选:B.
7.已知x=﹣2是方程ax+4x=2的解,则a的值是( )
A.﹣5 B.3 C.5 D.﹣3
【分析】把x=﹣2代入已知方程求出a的值即可.
【解答】解:把x=﹣2代入方程得:﹣2a﹣8=2,
解得:a=﹣5.
故选A.
8.如果A、B、C三点在同一直线上,线段AB=3cm,BC=2cm,那么A、C两点之间的距离为( )
A.1cm B.5cm C.1cm或5cm D.无法 确定
【分析】 由题意可知,点C分两种情况,画出线段图,结合已知数据即可求出结论.
【解答】解:由题意可知,C点分两种情况,
①C点在线段AB延长线上,如图1,
AC=AB+BC=3+2=5cm;
②C点在线段AB上,如图2,
AC=AB﹣BC=3﹣2=1cm.
综合①②A、C两点之间的距离为1cm或5cm.
故选C.
9.下列事实可以用“两点确定一条直线”来解释的有( )个
①墙上钉木条至少要两颗钉子才能牢固;
②农民拉绳播秧;
③解放军叔叔打靶瞄准;
④从A地到B地架设电线,总是尽可能沿着线段AB架设.
A.1 B.2 C.3 D.4
【分析】由题意,认真分析题干,用数学知识解释生活中的现象.
【解答】解:①②③现象可以用两点可以确定一条直线来解释;
④现象可以用两点之间,线段最短来解释.
故选:C.
10.在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,那么∠AOB的大小为( )
A.69° B.111° C.141° D. 159°
【分析】首先计算出∠3的度数,再计算∠AOB的度数即可.
【解答】解:由题意得: ∠1=54°,∠2=15°,
∠3=90°﹣54°=36°,
∠AOB=36°+90°+15°=141°,
故选:C.
11.如图,AB是直线,O是直线上一点,OC、OD是两条射线,则图中小于平角的角有( )
A.3个 B.4个 C.5个 D.6个
【分析】利用角的定义以及结合图形得出即可.
【解答】解:图中小于平角的角有:∠AOC,∠COD,∠BOD,∠AOD,∠COB,共5个.
故选:C.
12.如图是一个正方体包装盒的表面展开图,若在其中的三个正方形A,B,C内分别填上适当的数,使得将这个表面展开图沿虚线折成正方体后,相对面上的两数互为相反数,则填在A,B,C内的三个数依次是( )
A.1,0,﹣2 B.0,1,﹣2 C.0,﹣2,1 D.﹣2,0,1
【分析】利用正方体及其表面展开图的特点解题.
【解答】解:图中图形折叠成正方体后,A与0对应,B与2对应,C与﹣1对应.故选C.
二、填空题:(每空4分,共40分)
13.若3a4bm+1=﹣ a3n﹣2b2是同类项,则m﹣n= ﹣1 .
【分析】本题考查同类项的定义,所含字母相同,相同字母的指数也相同的项叫做同类项,由同类项的定义可先求得m和n的值,从而求出m﹣n的值.
【解答】解:由同类项的定义可知3n﹣2=4且m+1=2,
解得n=2,m=1,
所以m﹣n=﹣1.
14.已知A点在数轴上对应有理数a,现将A右移5个单位长度后再向左移7个单位长度到达B点,B点在数轴上对应的有理数为 ,则有理数a= .
【分析】设点A表示的数为x,根据左减右加,列出方程,即可解答.
【解答】解:设点A表示的数为x,
根据题意,得:x+5﹣7=﹣ ,
解得:x= .
故答案为: .
15.计算21°49′+49°21′= 71°10′ .
【分析】根据度分秒的加法,相同单位相加,满60时向上一单位进1,可得答案.
【解答】解:原式=70°70′=71°10′.
故答案为:71°10′.
16.一件服装标价200元,以6折销售,可获利20%,这件服装的进价是 100 元.
【分析】根据题意,找出相等关系为:进价×(1+20%)=200×60%,设未知数列方程求解.
【解答】解:设这件服装的进价为x元,依题意得:
(1+20%)x=200×60%,
解得:x=100,
则这件服装的进价是100元.
故答案为100.
17.若关于x的方程k(x2+1)+x2=x|k|+3为一元一次方程,那么k= ﹣1 .
【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常数且a≠0).
【解答】解:由k(x2+1)+x2=x|k|+3为一元一次方程,得
|k|=1,且k+1=0.
解得k=﹣1.
故答案为:k=﹣1.
18.已知OC平分∠AOB,若∠AOB=60°,∠COD=10°,则∠AOD的度数为 20°或40° .
【分析】利用角的和差关系计算.根据题意可得此题要分两种情况,一种是OD在∠AOC内部,另一种是OD∠BOC内部.
【解答】解:分两种情况进行讨论:
①如图1,射线OD在∠AOC的内部,
∵OC平分∠AOB,
∴∠AOC=∠BOC,
∵∠AOB=60°,
∴∠AOC=∠BOC=30°,
又∵∠C0D=10°,
∴∠AOD=∠AOC﹣∠C0D=20°;
②如图2,射线OD在∠COB的内部,
∵OC平分∠AOB,
∴∠AOC=∠BOC,
∵∠AOB=60°,
∴∠AOC=∠BOC=30°,
又∵∠C0D=10°,
∴∠AOD=∠AOC+∠C0D=40°;
综上所述,∠AOD=20°或40°
故答案为20°或40°.
19.地球上的陆地面积约为149000000平方千米,这个数字用科学记数法表示应为 1.49×108 .
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于149000000有9位,所以可以确定n=9﹣1=8.
【解答】解:149000000=1.49×108,
故答案为:1.49×108.
20.在看中央电视台“动物世界”节目时,我们可以看到这样的画面:非洲雄狮在广阔的草原上捕食鹿时,总是沿直线狂奔,其中蕴含的数学知识是 两点之间,线段最短 .
【分析】根据线段的性质解答.
【解答】解:沿直线狂奔蕴含的数学知识是:两点之间,线段最短.
故答案为:两点之间,线段最短.
21.假设有足够多的'黑白围棋子,按照一定的规律排成一行:
请问第2010个棋子是黑的还是白的?答: 黑的 .
【分析】观察黑白围棋子排成,可得到每2白2黑1白1黑6个一组进行循环,由于2010=335×6,所以第2013个棋子与每组的第6颗棋子同色.
【解答】解:黑白围棋子每6个一组进行循环,
而2010=335×6,
所以第2010个棋子与第1组的第6颗棋子一样,即第2010个棋子是黑的.
故答案为:黑的.
22.下列说法中:①若ax=ay,则x=y(其中a是有理数);②若 ,则a<0;③代数式﹣3a+10b+3a﹣10b﹣2的值与a,b都无关;④当x=3时,代数式1+(3﹣x)2有最大值l;⑤若|a|=|﹣9|,则a=﹣9.其中正确的是: ②③ (填序号)
【分析】通过代数式的求值,绝对值的性质,等式的性质进行逐项分析解答即可推出结论.
【解答】解:①若a=0,x、y可取任意值,故本项错误,
②由题意可知,|a|=﹣a,即可推出a为非正数,结合a≠0,∴a<0,故本项正确,
③通过合并同类项,原式=﹣2,所以代数式的值与a、b没有关系,故本项正确,
④∵1+(3﹣x)2≥1,∴x=3时,原式=1,∴当x=3时,代数式1+(3﹣x)2有最小值l,故本项说法错误,
⑤由题意可知,|a|=9,所以a=±9,故本项错误,
所以,综上所述,②③正确.
故答案为②③.
三.综合题(62分)
23.计算:
(1)﹣4﹣28﹣(﹣29)+(﹣24)
(2)﹣32﹣|﹣6|﹣3×(﹣ )+(﹣2)2÷
(3)2(a2﹣ab)﹣2a2+3ab.
【分析】(1)原式利用减法法则变形,计算即可得到结果;
(2)原式先计算乘方及绝对值运算,再计算乘除运算,最后算加减运算即可得到结果;
(3)原式去括号合并即可得到结果.
【解答】解:(1)原式=﹣4﹣28+29﹣24=﹣27;
(2)原式=﹣9﹣6+1+2=﹣12;
(3)原式=2a2﹣2ab﹣2a2+3ab=ab.
24.若|a+2|+(2b﹣4)2=0,求代数式4(a2b+ab2)﹣2(2a2b﹣1)﹣(2ab2+a2)+2的值.
【 分析】原式去括号合并得到最简结果,利用非负数的性质求出a与b的值,代入计算即可求出值.
【解答】解:原式=4a2b+4ab2﹣4a2b+2﹣2ab2﹣a2+2=2ab2﹣a2+4,
∵|a+2|+(2b﹣4)2=0,
∴a+2=0,2b﹣4=0,
解得:a=﹣2,b=2,
则原式=﹣16﹣4+4=﹣16.
2 5.解方程
(1)4x﹣1=x+2
(2) .
【分析】(1)方程移项合并,把x系数化为1,即可求出解;
(2)方程去括号,去分母,移项合并,把x系数化为1,即可求出解.
【解答】解:(1)移项合并得:3x=3,
解得:x=1;
(2)去括号得: ﹣ + = ,即 ﹣ =0,
去分母得:3x+6﹣5=0,
解得:x=﹣ .
26.a,b,c三个数在数轴上的位置如图所示,化简:|a﹣b|﹣|a+c|﹣|c﹣b|.
【分析】根据数轴可以得到a、b、c的大小,a的绝对值与c的绝对值的大小,从而可以将|a﹣b|﹣|a+c|﹣|c﹣b|中的绝对值符号去掉并化简.
【解答】解:∵由数轴可得,a<b<0|c|, p=""> </b<0|c|,>
∴|a﹣b|﹣|a+c|﹣|c﹣b|
=b﹣a+(a+c)﹣(c﹣b)
=b﹣a+a+c﹣c+b
=2b.
27.如图,D是AB的中点,E是BC的中点,BE= AC=3cm,求线段DE的长.
【分析】根据已知求出AC,根据线段中点求出DB= AB,BE= BC,求出DE=DB+BE= AC,代入求出即可.
【解答】解:∵BE= AC=3cm,
∴AC=15cm,
∵D是AB的中点,E是BC的中点,
∴DB= AB,BE= BC,
∴DE=DB+BE
= AB+ BC
= AC
= 15cm
=7.5cm,
即DE=7.5cm.
28.如图,∠AOB=∠COD=90°,OC平分∠AOB,∠BOD=3∠DOE.试求∠COE的度数.
【分析】根据角平分线的定义先求∠BOC的度数,即可求得∠BOD,再由∠BOD=3∠DOE,求得∠BOE.
【解答】解:∵∠AOB=90°,OC平分∠AOB
∴∠BOC= ∠AOB=45°(3分)
∵∠BOD=∠COD﹣∠BOC=90°﹣45°=45°
∠BOD=3∠DOE(6分)
∴∠DOE=15°(8分)
∴∠COE=∠COD﹣∠DOE=90°﹣15°=75°(10分)
故答案为75°.
29.小明家离学校5千米,放学后,爸爸从家里出发去学校接小明,与此同时小明从学校出发往家走,已知爸爸的速度是6千米/小时,小明的速度是4千米/小时.
(1)爸爸与小明相遇时,爸爸走了多少时间?
(2)若小明出发20分钟后发现书本忘带了,立刻转身以8千米/小时的速度返回学校拿到书本后仍以此速度继续往家走.请问爸爸与小明相遇时,离学校还有多远?(不计途中耽搁)
【分析】(1)根据爸爸的速度是6千米/小时,小明的速度是4千米/小时,小明家离学校5千米,利用两人行走的和为5千米列出方程求解即可;
(2)设爸爸走了y小时,等量关系是:爸爸y小时行走的路程+小明以8千米/小时的速度行走(y﹣ )小时的路程﹣小明以4千米/小时的速度行走 小时的路程=5千米,依此列出方程求解即可.
【解答】解:(1)设爸爸走了x小时.
根据题意,得 (6+4)x=5,
解得:x= ,
答:爸爸走了 小时.
(2)设爸爸走了y小时,20分钟= 小时,
根据题意得:6y+8(y﹣ )﹣4× =5,
解得:y= ,
则5﹣6× = (千米).
答:爸爸与小明相遇时,离学校还有 千米远.