非齐次线性方程组的通解
1个回答
展开全部
非齐次线性方程组的通解=齐次线性方程组的通解+非齐次线性方程组的一个特解(η=ζ+η*)。非齐次线性方程组是常数项不全为零的线性方程组。
非齐次线性方程组解法
非齐次线性方程组Ax=b的求解步骤:
(1)对增广矩阵B施行初等行变换化为行阶梯形。若R(A)<R(B),则方程组无解。
(2)若R(A)=R(B),则进一步将B化为行最简形。
(3)设R(A)=R(B)=r;把行最简形中r个非零行的非0首元所对应的未知数用其余n-r个未知数(自由未知数)表示,并令自由未知数分别等于C1,C2……,Cn-r ,即可写出含n-r个参数的通解。
非齐次线性方程组解的判别
如果系数矩阵的秩小于增广矩阵的秩,方程组无解;如果系数矩阵的秩等于增广矩阵的秩,方程组有解。在有解的情况下,如果系数矩阵的秩等于未知数的个数,非齐次线性方程组有唯一解。
如果系数矩阵的秩小于未知数的个数,非齐次线性方程组有无穷多解,如果有无穷多解,先求所对应齐次线性方程组的基础解系,再求出非齐次线性方程组的一个特解。
由此可知:如果非齐次线性方程组有无穷多解,则其对应的齐次线性方程组一定有非零解,且非齐次线性方程组的全部解(通解)可表示为:对应齐次线性方程组的通解+非齐次线性方程组的特解。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询