根据数列极限的定义证明0.99999……9的极限值为1

 我来答
科创17
2022-07-23 · TA获得超过5883个赞
知道小有建树答主
回答量:2846
采纳率:100%
帮助的人:172万
展开全部
证:|0.999999(n个)-1|=(1/10)^n=1/(10^n)
为了使|0.999999(n个)-1|小于任意给定的正数ε,只要
1/(10^n)lg(1/ε)
所以任意ε>0,取N=lg(1/ε)
则当n>N时,就有|0.999999(n个)-1|
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式