取整方程的解[x]+[2x]+[4x]+[8x]+[16x]+[32x]=12345.其中“[ ]”为取整符号,表示该数

 我来答
新科技17
2022-10-31 · TA获得超过5901个赞
知道小有建树答主
回答量:355
采纳率:100%
帮助的人:74.7万
展开全部
取整不等式学过吗?[a]+[b]≤[a+b]、[kx]≤k[x]等等,这种如果没学过的话这题是没法做的.
12345=[x]+[2x]+[4x]+[8x]+[16x]+[32x]≤[x+2x+4x+8x+16x+32x]=[63x]≤63[x].
反证,假设[x]≥196,则[x]+...+[32x]≥[196]+[2×196]+...+[32×196]=12348>12345矛盾.同理[x]≤194时同样推出矛盾,因此[x]=195.设x=195+y,y∈[0,1).
这样12345=[195+y]+[2(195+y)]+...+[32(195+y)]=195+2×195+...+32×195+f(y)=12285+f(y)
其中f(y)=[y]+[2y]+...+[32y],因为y∈[0,1),因此f(y)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式