讨论函数y=|x|在x=0处的连续性和可导性?
1个回答
展开全部
x≥0时,y=|x|=x x=0时,y=0
x≤0时,y=|x|=-x x=0时,y=0
函数在x=0处连续.
x≥0时,y'=x'=1
x≤0时,y'=(-x)'=-1
1≠-1
函数在x=0处不可导.,9,连续性:左连续:limx->0- (-x)=0 右连续:limx->0+ (x)=0 左连续=右连续 所以函数y在x=0出连续。
可导性:左导数:limx->0+ (-x-0)/(x-0)=-1,右导数:limx->0- (x-0)/(x-0)=1 由于左右导数不相等,所以函数y在x=0处不可导。
注意:x-0时,y=0。同时,在图形上可以看出x=0处是一个折点。...,3,
x≤0时,y=|x|=-x x=0时,y=0
函数在x=0处连续.
x≥0时,y'=x'=1
x≤0时,y'=(-x)'=-1
1≠-1
函数在x=0处不可导.,9,连续性:左连续:limx->0- (-x)=0 右连续:limx->0+ (x)=0 左连续=右连续 所以函数y在x=0出连续。
可导性:左导数:limx->0+ (-x-0)/(x-0)=-1,右导数:limx->0- (x-0)/(x-0)=1 由于左右导数不相等,所以函数y在x=0处不可导。
注意:x-0时,y=0。同时,在图形上可以看出x=0处是一个折点。...,3,
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询