数据分析师这个职业的前景如何?女生做数据分析师会不会很累呢?
女生做数据分析师会很累,下面详细说一下!
做数据分析通常有两种方式:一是对算法进行深入研究,然后进行数据挖掘;二是对业务进行深入了解,然后进行业务。
说实话,我并不相信数据分析本身。为什么不呢?让我们从数据分析的分解开始。大多数数据分析将花费50%的时间记录数据,40%的时间与产品经理沟通:做AB实验和效应回归,10%的时间做探索性分析。现在处于数据分析岗位的位置,可以跳出来说不。
但这些工作中的大多数实际上是可替换的机械工作。读写SQL取号这个工作是一项脏活、累活,人可以取号,雇一个做了五年数据分析的和一个刚毕业的数据分析写SQL的基本没有区别。只是一开始可能不是100%准确。探索性分析是数据分析应该做的工作,但我知道大多数企业数据分析现在还没有做。探索性分析通常需要强大的技术技能或良好的业务知识,这两者都可以使探索性项目有价值。最后,技术过硬的后来基本上都去做算法数据挖掘了,因为他们发现在数据分析这个岗位上因为不断的需求扼杀了人的意志。这些人会没事的,因为过去只做数据挖掘的人,他们大部分都破产了。但事实证明,数据分析对商业更加敏感。
业务优秀的做业务的产品经理,因为原来业务能力很强,数据意识也很强,但需要跟着业务走的不强,数据不强的他背后听命令,谁能受得了呢。而他们自己的数据和业务的结合可以带来更大的价值。所以做数据分析的业务人员通常比普通的产品经理更好。
那么,回到数据分析师的未来何去何从的问题上。在我看来,数据分析本身的发展前景并不是很好。但是有了数据分析的经验,如果我走算法和业务两个方向,未来的发展不会太糟。