求不定积分[(x^2+9)^2]分之一dx?
1个回答
展开全部
∫dx/(x^2+9)
=(1/3)∫d(x/3)/[(x/3)^2+1]
=(1/3)arctan(x/3) +C,4,
多情误 举报
题目是 ∫dx/[(x^2+9)^2] ∫dx/[(x^2+9)^2] x=3tanu tanu=x/3 cos2u=2(cosu)^2-1=2/(1+tanu^2)-1=(1-tanu^2)/(1+tanu^2) tan2u=2tanu/(1-tanu^2) sin2u=tan2u*cos2u=2tanu/(1+tanu^2)=2x/3/(1+x^2/9)=6x/(9+x^2) dx=3(secu)^2du (x^2+9)^2=81secu^2 =∫(1/27)du/(secu)^2 =∫(1/27)*(cosu)^2du =∫(1/54)(1+cos2u)du =(1/54)u+(1/108)sin2u+C =(1/54)arctan(x/3)+(1/18)(x)/(9+x^2) +C,
=(1/3)∫d(x/3)/[(x/3)^2+1]
=(1/3)arctan(x/3) +C,4,
多情误 举报
题目是 ∫dx/[(x^2+9)^2] ∫dx/[(x^2+9)^2] x=3tanu tanu=x/3 cos2u=2(cosu)^2-1=2/(1+tanu^2)-1=(1-tanu^2)/(1+tanu^2) tan2u=2tanu/(1-tanu^2) sin2u=tan2u*cos2u=2tanu/(1+tanu^2)=2x/3/(1+x^2/9)=6x/(9+x^2) dx=3(secu)^2du (x^2+9)^2=81secu^2 =∫(1/27)du/(secu)^2 =∫(1/27)*(cosu)^2du =∫(1/54)(1+cos2u)du =(1/54)u+(1/108)sin2u+C =(1/54)arctan(x/3)+(1/18)(x)/(9+x^2) +C,
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询