积化和差公式怎么推导的?
积化和差公式是:
sinαcosβ=【sin(α+β)+sin(α-β)】/2
cosαsinβ =【sin(α+β)-sin(α-β)】/2
sinαsinβ=【cos(α-β)-cos(α+β)】/2
cosαcosβ=【cos(α+β)+cos(α-β)】/2
和差化积以及积化和差公式的推导非常简单。只要掌握
sin(α+β)、sin(α-β)、cos(α+β)、cos(α-β)
这种最基本的三角函数展开公式,就能轻松掌握8个公式的推导
首先、下面这几个都是高中的内容了,要熟稔于心
sin(α+β)=sinαcosβ+cosαsinβ ①
sin(α-β)=sinαcosβ-cosαsinβ ②
cos(α+β)=cosαcosβ-sinαsinβ ③
cos(α-β)=cosαcosβ+sinαsinβ ④
我们看积化和差公式,我们要找的积是
sinαcosβ、sinαsinβ这种。
看①②两个式子,sinαcosβ当作x cosαsinβ当作y。那么①②两个式子就相当于一个方程组了,那么很容易就能解出sinαcosβ, cosαsinβ。同理式子 ③ ④也是
于是得到积化和差的公式
sinαcosβ=【sin(α+β)+sin(α-β)】/2
cosαsinβ =【sin(α+β)-sin(α-β)】/2
sinαsinβ=【cos(α-β)-cos(α+β)】/2
cosαcosβ=【cos(α+β)+cos(α-β)】/2
扩展资料:
得到积化和差的公式后,只要在做一个小的变换就能得到和差化积的公式了。令积化和差公式中的α+β=a,α-β=b。
则,α=(a+b)/2 β=(a-b)/2
积化和差公式改写为
sin[(a+b)/2]cos[(a-b)/2]=[sina+sinb]/2
cos[(a+b)/2]sin[(a-b)/2]=[sina-sinb]/2
sin[(a+b)/2]sin[(a-b)/2]=[cosb-cosa]/2
cos[(a+b)/2]cos[(a-b)/2]=[cosa+cosb]/2
然后把右边式子的/2移到左边去,把a用字母α,b用字母β代替
就得到了我们的积化和差公式。
参考资料:百度百科-积化和差
2023-07-25 广告