数列an=2n-1(n为奇数) an=2^n(n为偶数) 求前n项和Sn

 我来答
大沈他次苹0B
2022-09-14 · TA获得超过7349个赞
知道大有可为答主
回答量:3059
采纳率:100%
帮助的人:180万
展开全部
n是奇数则有(n-1)/2个偶数项q=2^2=4,首项2^2=4所以和=4*[4^(n-1)/2-1]/(4-1)=(4/3)*[2^(n-1)-1]有(n+1)/2个奇数项a1=1,an=2n-1所以和=(1+2n-1)*[(n+1)/2]/2=n(n+1)/2n是偶数则有n/2个偶数项q=2^2=4,首项2^2=4所以和=...
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式