勾股定理只适用于直角三角形?适用于等腰三角形么?
勾股定理只适用于直角三角形,不适用于等腰三角形。
勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。
勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。
在中国,商朝时期的商高提出了“勾三股四玄五”的勾股定理的特例。在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。
在平面上的一个直角三角形中,两个直角边边长的平方加起来等于斜边长的平方。如果设直角三角形的两条直角边长度分别是 和 ,斜边长度是 ,那么可以用数学语言表达:
扩展资料
勾股数组:
勾股数组是满足勾股定理 的正整数组 ,其中的 称为勾股数。例如 就是一组勾股数组。
任意一组勾股数 可以表示为如下形式: , , ,其中 均为正整数,且 。
定理用途:
已知直角三角形两边求解第三边,或者已知三角形的三边长度,证明该三角形为直角三角形或用来证明该三角形内两边垂直。利用勾股定理求线段长度这是勾股定理的最基本运用。
参考资料:百度百科-勾股定理