函数在一点导数和极限有什么区别吗?

 我来答
教育小百科达人
2022-10-16 · TA获得超过156万个赞
知道大有可为答主
回答量:8828
采纳率:99%
帮助的人:474万
展开全部

首先函数在一点处的导数和在该点处导函数的极限是两个不同的概念,前者是直接用导数定义求得,后者是利用求导公式求出导函数的表达式后再求该点处的极限,两者完全可以不相等。

例如f(x)=x^2*sin(1/x)在x=0处的导数等于0,但其导函数在x=0处的极限不存在。但是在相当普遍的情况下,二者又是相等的,这个事实的本质上就是由导数极限定理所保证的。

导数极限定理是说:如果f(x)在x0的某领域内连续,在x0的去心邻域内可导,且导函数在x0处的极限存在(等于a),则f(x)在x0处的导数也存在并且等于a。

这个定理的重要之处在于,不事先要求f在x0处可导,而根据导函数的极限存在就能推出在该点可导,也就是说,导函数如果在某点极限存在,那么在该点导函数一定是连续的,而这正是一般函数所不具备的性质。

扩展资料:

1.利用函数的连续性求函数的极限(直接带入即可)

如果是初等函数,且点在的定义区间内,那么,因此计算当时的极限,只要计算对应的函数值就可以了。

2.利用有理化分子或分母求函数的极限

a.若含有,一般利用去根号

b.若含有,一般利用,去根号

3.利用两个重要极限求函数的极限

4.利用无穷小的性质求函数的极限

性质1:有界函数与无穷小的乘积是无穷小

性质2:常数与无穷小的乘积是无穷小

性质3:有限个无穷小相加、相减及相乘仍旧无穷小

5.分段函数的极限

求分段函数的极限的充要条件是:

6.利用抓大头准则求函数的极限

其中为非负整数.

7.利用洛必达法则求函数的极限

(可向,转换)

对于未定式“ ”型,“ ”型的极限计算,洛必达法则是比较简单快捷的方法。

8.利用定积分的定义求函数的极限

利用公式:

导数的求导法则

由基本函数的和、差、积、商或相互复合构成的函数的导函数则可以通过函数的求导法则来推导。基本的求导法则如下:

1、求导的线性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合(即①式)。

2、两个函数的乘积的导函数:一导乘二+一乘二导(即②式)。

3、两个函数的商的导函数也是一个分式:(子导乘母-子乘母导)除以母平方(即③式)。

4、如果有复合函数,则用链式法则求导。

注意:

1、f'(x)<0是f(x)为减函数的充分不必要条件,不是充要条件。

2、导数为零的点不一定是极值点。当函数为常值函数,没有增减性,即没有极值点。但导数为零。(导数为零的点称之为驻点,如果驻点两侧的导数的符号相反,则该点为极值点,否则为一般的驻点,如  中f'(0)=0,x=0的左右导数符号为正,该点为一般驻点。)

求导方法(定义法):

①求函数的增量  ;

②求平均变化率;

③取极限,得导数。

参考资料:百度百科——导数

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式