在计算极限的时候,什么情况下可以用等价无穷小替换?能说明原因吗?
展开全部
等价无穷小一般只能在乘除中替换,在加减中替换有时会出错(加减时可以整体代换,不一定能随意单独代换或分别代换)。
求极限时,使用等价无穷小的条件:
1、被代换的量,在取极限的时候极限值为0;
2、被代换的量,作为被乘或者被除的元素时可以用等价无穷小代换,但是作为加减的元素时就不可以。
独立的乘积的因子若是无穷小,可以用等价的无穷小替换。例如lim(x→0) sinx*tanx/x^2,这里的sinx,tanx都可以替换,如果是lim(x→0) (sinx-tanx)/x^3,分子的sinx,tanx都不能替换,可以化成lim(x→0) tanx(cosx-1)/x^3后,替换sinx与1-cosx。
扩展资料:
当x→0时,等价无穷小:
(1)sinx~x
(2)tanx~x
(3)arcsinx~x
(4)arctanx~x
(5)1-cosx~1/2x^2
(6)a^x-1~xlna
(7)e^x-1~x
(8)ln(1+x)~x
(9)(1+Bx)^a-1~aBx
(10)[(1+x)^1/n]-1~1/nx
(11)loga(1+x)~x/lna
参考资料来源:百度百科-等价无穷小
北京埃德思远电气技术咨询有限公司
2023-07-25 广告
2023-07-25 广告
通俗来说,就是在乘除时可以直接使用, 本质上说,要明白sinx与x的等价无穷小换是一个~符号,并不是等号,故需要一定条件才能使用,我们实际运算是以等号递推的。只是泰勒是使用了等号直接成立,可以直接使用。因此建议掌握几个常用泰勒,极限计算会更...
点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询