非参数统计的特点和适用范围是什么

 我来答
刺任芹O
2022-11-16 · TA获得超过6.2万个赞
知道顶级答主
回答量:38.7万
采纳率:99%
帮助的人:8833万
展开全部

一、基本特点

非参数统计问题中对总体分布的假定要求的条件很宽,因而针对这种问题而构造的非参数统计方法,不致因为对总体分布的假定不当而导致重大错误,所以它往往有较好的稳健性(见稳健统计),这是一个重要特点。

但因为非参数统计方法需要照顾范围很广的分布,在某些情况下会导致其效率的降低。不过,近代理论证明了:一些重要的非参数统计方法,当与相应的参数方法比较时,即使在最有利于后者的情况下,效率上的损失也很小。

二、适用范围

1、待分析数据不满足参数检验所要求的假定,因而无法应用参数检验。例如,我们曾遇到过的非正态总体小样本,在t-检验法也不适用时,作为替代方法,就可以采用非参数检验。

2、仅由一些等级构成的数据,不能应用参数检验。例如,消费者可能被问及对几种不同商标的饮料的喜欢程度,虽然,他们不能对每种商标都指定一个数字来表示他们对该商标的喜欢程度,却能将几种商标按喜欢的顺序分成等级。这种情形也宜采用非参数检验。

3、所提的问题中并不包含参数,也不能用参数检验。例如,我们想判断一个样本是否为随机样本,采用非参数检验法就是适当的。

4、当我们需要迅速得出结果时,也可以不用参数统计方法而用非参数统计方法来达到目的。一般说来,非参数统计方法所要求的计算与参数统计方法相比,完成起来既快且易。有些非参数统计方法的计算,就算对统计学知识不熟练的人,也能在收集数据时及时予以完成。

扩展资料

相关方法:

1、总体分布的卡方检验

例如,医学家在研究心脏病人猝死人数与日期的关系时发现:一周之中,星期一心脏病人猝死者较多,其他日子则基本相当。当天的比例近似为2.8:1:1:1:1:1:1。现收集到心脏病人死亡日期的样本数据,推断其总体分布是否与上述理论分布相吻合。

卡方检验方法可以根据样本数据,推断总体分布与期望分布或某一理论分布是否存在显著差异,是一种吻合性检验,通常适于对有多项分类值的总体分布的分析。它的原假设是:样本来自的总体分布与期望分布或某一理论分布无差异。

2、二项分布检验

在生活中有很多数据的取值是二值的,例如,人群可以分成男性和女性,产品可以分成合格和不合格,学生可以分成三好学生和非三好学生,投掷硬币实验的结果可以分成出现正面和出现反面等。

通常将这样的二值分别用1或0表示。如果进行n次相同的实验,则出现两类(1或0)的次数可以用离散型随机变量X来描述。如果随机变量X为1的概率设为P,则随机变量X值为0的概率Q便等于1-P,形成二项分布。

SPSS的二项分布检验正是要通过样本数据检验样本来自的总体是否服从指定的概率为P的二项分布,其原假设是:样本来自的总体与指定的二项分布无显著差异。

从某产品中随机抽取23个样品进行检测并得到检测结果。用1表示一级品,用0表示非一级品。根据抽样结果验证该批产品的一级品率是否为90%。

参考资料来源:百度百科-非参数统计

光点科技
2023-08-15 广告
通常情况下,我们会按照结构模型把系统产生的数据分为三种类型:结构化数据、半结构化数据和非结构化数据。结构化数据,即行数据,是存储在数据库里,可以用二维表结构来逻辑表达实现的数据。最常见的就是数字数据和文本数据,它们可以某种标准格式存在于文件... 点击进入详情页
本回答由光点科技提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式