求极限x趋于0 时 (sinx/x)^(1/x^2)

 我来答
新科技17
2022-09-23 · TA获得超过5908个赞
知道小有建树答主
回答量:355
采纳率:100%
帮助的人:75.3万
展开全部
x→0
lim (sinx/x)^(1/x^2)
=lim e^ln (sinx/x)^(1/x^2)
=e^lim ln (sinx/x)^(1/x^2)
考虑
lim ln (sinx/x)^(1/x^2)
=lim ln(sinx/x) / x^2
=lim ln(1+sinx/x - 1) / x^2
利用等价无穷小:ln(1+x)~x
=lim (sinx/x - 1) / x^2
=lim (sinx-x)/x^3
该极限为0/0型,利用L'Hospital法则
=lim (sinx-x)' / (x^3)'
=lim (cosx-1) / (3x^2)
该极限为0/0型,利用L'Hospital法则
=lim (cosx-1)' / (3x^2)'
=lim -sinx / 6x
根据重要的极限:lim sinx/x=1
=-1/6
因此,原极限=e^(-1/6)
有不懂欢迎追问
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式