证明:A乘以A的转置等于零,那么A一定为零矩阵
1个回答
展开全部
分类: 教育/科学 >> 科学技术
问题描述:
具体一点,谢谢了
解析:
用最基本的方法:设A==(a ij)m*n 分块A==(A1,A2,...,An),Aj==(a 1j,a 2j,...,a mj)(j==1,2,...n)
则T(A)==T(T(A1),T(A2),...,T(An))
∴AT(A)==∑AjT(Aj)(j==1,2,...n) 显然Aj为m*1阵T(Aj)为1*m阵 故AT(A)必为m*m阵
考虑乘积矩阵对角线的元有(a 1j)^2==(a 2j)^2==...==(a mj)^2==0
故a 1j==a 2j==...==a mj==0.又j==1,2,...n
∴a ij==0,i==1,2...,m,j==1,2,...n
即A==O 得证
问题描述:
具体一点,谢谢了
解析:
用最基本的方法:设A==(a ij)m*n 分块A==(A1,A2,...,An),Aj==(a 1j,a 2j,...,a mj)(j==1,2,...n)
则T(A)==T(T(A1),T(A2),...,T(An))
∴AT(A)==∑AjT(Aj)(j==1,2,...n) 显然Aj为m*1阵T(Aj)为1*m阵 故AT(A)必为m*m阵
考虑乘积矩阵对角线的元有(a 1j)^2==(a 2j)^2==...==(a mj)^2==0
故a 1j==a 2j==...==a mj==0.又j==1,2,...n
∴a ij==0,i==1,2...,m,j==1,2,...n
即A==O 得证
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询