2个回答
展开全部
这个定积分用区间再现公式解答?
$\int_{a}^{b} f(x) dx = F(b) - F(a)$
其中,F是f的积分函数。
$\int_{a}^{b} f(x) dx = F(b) - F(a)$
其中,F是f的积分函数。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
I = ∫<0, π>x^2√[1-(sinx)^2]dx
= ∫<0, π/2>x^2√[1-(sinx)^2]dx + ∫<π/2, π>x^2√[1-(sinx)^2]dx
= ∫<0, π/2>x^2 cosx dx + ∫<π/2, π> x^2(-cosx)dx
= ∫<0, π/2>x^2dsinx - ∫<π/2, π> x^2dsinx
= [x^2sinx]<0, π/2> - ∫<0, π/2>2xsinx - [x^2sinx]<π/2, π>+∫<π/2, π> 2xsinxdx
= π^2/4 + ∫<0, π/2>2xdcosx - π^2/4 - ∫<π/2, π> 2xdcosx
= [2xcosx]<0, π/2>-2∫<0, π/2>cosxdx - [2xcosx]<π/2, π>+2∫<π/2, π>cosxdx
= 0 - 2[sinx]<0, π/2> - (-2π) + 2[sinx]<π/2, π>
= - 2 + 2π - 2 = 2(π - 2)
= ∫<0, π/2>x^2√[1-(sinx)^2]dx + ∫<π/2, π>x^2√[1-(sinx)^2]dx
= ∫<0, π/2>x^2 cosx dx + ∫<π/2, π> x^2(-cosx)dx
= ∫<0, π/2>x^2dsinx - ∫<π/2, π> x^2dsinx
= [x^2sinx]<0, π/2> - ∫<0, π/2>2xsinx - [x^2sinx]<π/2, π>+∫<π/2, π> 2xsinxdx
= π^2/4 + ∫<0, π/2>2xdcosx - π^2/4 - ∫<π/2, π> 2xdcosx
= [2xcosx]<0, π/2>-2∫<0, π/2>cosxdx - [2xcosx]<π/2, π>+2∫<π/2, π>cosxdx
= 0 - 2[sinx]<0, π/2> - (-2π) + 2[sinx]<π/2, π>
= - 2 + 2π - 2 = 2(π - 2)
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询