![](https://iknow-base.cdn.bcebos.com/lxb/notice.png)
如何将一元二次方程化成ax= b形式?
2个回答
展开全部
1. 去分母:在观察方程的构成后,在方程左右两边乘以各分母的最小公倍数;
2. 去括号:仔细观察方程后,先去掉方程中的小括号,再去掉中括号,最后去掉大括号;
3. 移项:把方程中含有未知数的项全部都移到方程的另外一边,剩余的几项则全部移动到方程的另一边;
4. 合并同类项:通过合并方程中相同的几项,把方程化成ax=b(a≠0)的形式;
5. 系数化为1:通过方程两边都除以未知数的系数a,使得x前面的系数变成1,从而得到方程的解。
2. 去括号:仔细观察方程后,先去掉方程中的小括号,再去掉中括号,最后去掉大括号;
3. 移项:把方程中含有未知数的项全部都移到方程的另外一边,剩余的几项则全部移动到方程的另一边;
4. 合并同类项:通过合并方程中相同的几项,把方程化成ax=b(a≠0)的形式;
5. 系数化为1:通过方程两边都除以未知数的系数a,使得x前面的系数变成1,从而得到方程的解。
展开全部
在把方程经过去分母、去括号、移项和合并同类项后,所有的一元二次方程都可以化成ax²+bx+c=0(a≠0)的形式。再进行配方:
x²+bx/a+c/a=0
x²+bx/a+(b/2a)²-b²/4a²+c/a=0
(x+b/2a)²-(b²/4a²-4ac/4a²)=0
(x+b/2a)²=(b²-4ac)/4a²
x+b/2a=±√(b²-4ac)/2a
就可以变形成为
x=-b/2a±√(b²-4ac)/2a
x²+bx/a+c/a=0
x²+bx/a+(b/2a)²-b²/4a²+c/a=0
(x+b/2a)²-(b²/4a²-4ac/4a²)=0
(x+b/2a)²=(b²-4ac)/4a²
x+b/2a=±√(b²-4ac)/2a
就可以变形成为
x=-b/2a±√(b²-4ac)/2a
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询