28 6 4 84 15 9 70 12后一数多少
28 6 4 84 15 9 70 12 后一数是4。
解题技巧:
28,6的公约数是2,2的平方是4;
84,15的公约数是3,3的平方是9;
70,12的公约数是2,2的平方是4。所以,是4。
扩展资料:
数字推理的规律一般限于加、减、乘、除、平方、开方、公约以及它们的组合等形式,根据形式可分为显含规律和暗含规律两类:
一、显含规律
相邻数之间通过简单的加、减、乘、除、平方、开方等运算发生联系,产生规律,主要有以下几种规律:
1、四则运算:相邻两个数加、减、乘、除等于第三数或者是相邻两个数加、减、乘、除后再加或者减一个常数等于第三数。
2、等差数列:数列中各个数字构成等差数列,包括数列中相邻两个数相减后的差值成等差数列的二级等差数列和两次差值构成等差数列的三级等差数列。
3、等比数列:数列中各个数字依次构成等比数列,包括二级等比数列或者三级等比数列。
4、平方数列:前一个数的平方等于第二个数,包括前一个数的平方再加减一个常数等于第二个数的平方数列变形。
5、倍数数列:前一个数乘一个倍数加减一个常数等于第二个数。
6、隔项数列:数列相隔两项呈现一定规律,这类数列包含的数字多。
7、奇偶数列:数列全奇数或者全偶数或者奇偶间隔。
8、排序数列:数列有特殊的序列规律。
二、暗含规律
数列规律不明显,但每一个数字本身都暗含规律,综合来看才具有全局规律。
1、幂次规律:数列中每一个数字都是n的平方或者是n的平方加减一个常数,或者是n的平方加减n,形成规律;每一个数字都是n的立方构成或者是n的立方加减一个常数构成,或者是n的立方加减n,形成规律;幂次超过立方的一般不考虑。
2、倍数规律:数列中每一个数字都是n的倍数加减一个常数,而这些n本身构成一定规律。
3、约数规律:数列中两个相邻或相隔数字的公约数的加、减、乘、除、平方、开方,这些关系,三者排列,其中一个即为所求数字,找规律即可。