二次函数的顶点式和一般式有什么区别?
顶点式:y=a(x-h)²+k,抛物线的顶点P(h,k)。顶点坐标:对于一般二次函数 y=ax^2+bx+c 其顶点坐标为 (-b/2a,(4ac-b²)/4a)。
应用图像:二次函数的图像。
另一种形式:y=a(x+h)²+k(a≠0)。
扩展资料
顶点式
y=a(x-h)+k(a≠0,a、h、k为常数),顶点坐标为(h,k),对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax的图像相同,当x=h时,y最大(小)值=k.有时题目会指出让你用配方法把一般式化成顶点式。
例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。
解:设y=a(x-1)²+2,把(3,10)代入上式,解得y=2(x-1)²+2。
注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h>0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。
具体可分为下面几种情况:
当h>0时,y=a(x-h)²的图像可由抛物线y=ax²向右平行移动h个单位得到;
当h<0时,y=a(x-h)²的图像可由抛物线y=ax²向左平行移动|h|个单位得到;
当h>0,k>0时,将抛物线y=ax向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)+k的图象;
当h>0,k<0时,将抛物线y=ax向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)+k的图象;
当h<0,k>0时,将抛物线y=ax向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)+k的图象;
当h<0,k<0时,将抛物线y=ax向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)+k的图象。
参考资料来源:百度百科-二次函数
2024-04-02 广告