什么是多元函数的偏导数?

 我来答
菏侯腊r
高粉答主

2023-03-25 · 醉心答题,欢迎关注
知道小有建树答主
回答量:1039
采纳率:88%
帮助的人:30.1万
展开全部

多元函数关于在x0处的偏导数存在的充要条件就是。
(t趋于0)lim [f(x0+t)-f(x0)]/t存在,对于其他的自变量也是一样的道理。多元函数可偏导与连续是非必要亦非充分关系。

例如:z = (x+1) |y| 在(0,0)点,对x 的偏导数存在,fx'(0,0) = 0,
对y 的偏导数不存在,因为 fy'+(0,0) = 1,fy'-(0,0) = -1
此时,需要说明该函数“对x 的偏导数存在,对y 的偏导数不存在”.

拓展资料:

在数学中,一个多变量的函数的偏导数,就是它关于其中一个变量的导数而保持其他变量恒定(相对于全导数,在其中所有变量都允许变化)。偏导数在向量分析和微分几何中是很有用的。

在一元函数中,导数就是函数的变化率。对于二元函数研究它的“变化率”,由于自变量多了一个,情况就要复杂的多。

在 xOy 平面内,当动点由 P(x0,y0) 沿不同方向变化时,函数 f(x,y) 的变化快慢一般说来是不同的,因此就需要研究 f(x,y) 在 (x0,y0) 点处沿不同方向的变化率。

参考资料:百度百科-偏导数

帐号已注销
2023-03-28 · 超过140用户采纳过TA的回答
知道小有建树答主
回答量:1450
采纳率:31%
帮助的人:38万
展开全部
多元函数偏导数是关于多元函数的偏导数,也就是函数中有多个变量和参数的情况下求函数偏导数的概念。。。。。。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式