如图,在△ABC中,D是AB的中点,PD⊥AB交∠ACB的平分线于点P,PM⊥AC于M,PN⊥BC交CB的延长线于N求证CM=CN=2分
如图,在△ABC中,D是AB的中点,PD⊥AB交∠ACB的平分线于点P,PM⊥AC于M,PN⊥BC交CB的延长线于N求证CM=CN=2分之一(AC+BC)...
如图,在△ABC中,D是AB的中点,PD⊥AB交∠ACB的平分线于点P,PM⊥AC于M,PN⊥BC交CB的延长线于N求证CM=CN=2分之一(AC+BC)
展开
1个回答
展开全部
证明:
CP平分∠ACB,
∴PM=PN,∠PCM=∠PCN,∠PMC=∠PNC
∴△CPM≌△CPN
∴CM=CN
得证
第二部分里,不放设∠CAB>∠CBA,根据图形,容易知道,M在线段AC上,N在线段CB的延长线上,
连接PA和PB,则
Rt△PMA和Rt△PNB中
PM=PN,PA=PB
∴Rt△PMA≌Rt△PNB (HL)
∴AM=BN
∴CA=CM+AM,CB=CN-BN
∴CA+CB=CM+AM+CN-BN=CM+CN=2CM=2CN
即CM=CN=(1/2)(CA+CB)
得证
CP平分∠ACB,
∴PM=PN,∠PCM=∠PCN,∠PMC=∠PNC
∴△CPM≌△CPN
∴CM=CN
得证
第二部分里,不放设∠CAB>∠CBA,根据图形,容易知道,M在线段AC上,N在线段CB的延长线上,
连接PA和PB,则
Rt△PMA和Rt△PNB中
PM=PN,PA=PB
∴Rt△PMA≌Rt△PNB (HL)
∴AM=BN
∴CA=CM+AM,CB=CN-BN
∴CA+CB=CM+AM+CN-BN=CM+CN=2CM=2CN
即CM=CN=(1/2)(CA+CB)
得证
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询