如图,在△ABC中,D是AB的中点,PD⊥AB交∠ACB的平分线于点P,PM⊥AC于M,PN⊥BC交CB的延长线于N求证CM=CN=2分

如图,在△ABC中,D是AB的中点,PD⊥AB交∠ACB的平分线于点P,PM⊥AC于M,PN⊥BC交CB的延长线于N求证CM=CN=2分之一(AC+BC)... 如图,在△ABC中,D是AB的中点,PD⊥AB交∠ACB的平分线于点P,PM⊥AC于M,PN⊥BC交CB的延长线于N求证CM=CN=2分之一(AC+BC) 展开
wsfylzm
2010-10-13 · TA获得超过2949个赞
知道小有建树答主
回答量:277
采纳率:0%
帮助的人:529万
展开全部
证明:

CP平分∠ACB,

∴PM=PN,∠PCM=∠PCN,∠PMC=∠PNC

∴△CPM≌△CPN

∴CM=CN

得证

第二部分里,不放设∠CAB>∠CBA,根据图形,容易知道,M在线段AC上,N在线段CB的延长线上,

连接PA和PB,则

Rt△PMA和Rt△PNB中

PM=PN,PA=PB

∴Rt△PMA≌Rt△PNB (HL)

∴AM=BN

∴CA=CM+AM,CB=CN-BN

∴CA+CB=CM+AM+CN-BN=CM+CN=2CM=2CN

即CM=CN=(1/2)(CA+CB)

得证
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式