数学中点积与叉积的区别?
6个回答
展开全部
如下:
a向量点积b向量,结果是个数,等于abcos<a,b>,<a,b>是a向量与b向量的夹角。
a向量叉积b向量,结果是个向量,模等于absin<a,b>,方向与a向量和b向量所在平面垂直,并且遵守右手法则,a握向b,拇指方向就是叉积向量方向。
点积的值:
u的大小、v的大小、u,v夹角的余弦。在u,v非零的前提下,点积如果为负,则u,v形成的角大于90度;如果为零,那么u,v垂直;如果为正,那么u,v形成的角为锐角。
两个单位向量的点积得到两个向量的夹角的cos值,通过它可以知道两个向量的相似性,利用点积可判断一个多边形是面向摄像机还是背向摄像机。
向量的点积与它们夹角的余弦成正比,因此在聚光灯的效果计算中,可以根据点积来得到光照效果,如果点积越大,说明夹角越小,则物体离光照的轴线越近,光照越强。
2023-03-23
展开全部
点乘,也叫数量积。结果是一个向量在另一个向量方向上投影的长度,是一个标量。叉乘,也叫向量积。结果是一个和已有两个向量都垂直的向量。
点乘和叉乘的区别点乘是向量的内积,叉乘是向量的外积。点乘:点乘的结果是一个实数a·b=|a|·|b|·cos<a,b<a,b表示a,b的夹角叉乘:叉乘的结果是一个向量。
几何意义:点乘的几何意义;可以用来表征或计算两个向量之间的夹角,以及在b向量在a向量方向上的投影。叉乘的几何意义:在三维几何中,向量a和向量b的叉乘结果是一个向量,更为熟知的叫法是法向量,该向量垂直于a和b向量构成的平面。在3D图像学中,叉乘的概念非常有用,可以通过两个向量的叉乘,生成第三个垂直于a,b的法向量,从而构建X、Y、Z坐标系。
叉乘和点乘的运算法则:点乘,也叫向量的内积、数量积。顾名思义,求下来的结果是一个数。向量a·向量b=|a||bcos。
点乘和叉乘的区别点乘是向量的内积,叉乘是向量的外积。点乘:点乘的结果是一个实数a·b=|a|·|b|·cos<a,b<a,b表示a,b的夹角叉乘:叉乘的结果是一个向量。
几何意义:点乘的几何意义;可以用来表征或计算两个向量之间的夹角,以及在b向量在a向量方向上的投影。叉乘的几何意义:在三维几何中,向量a和向量b的叉乘结果是一个向量,更为熟知的叫法是法向量,该向量垂直于a和b向量构成的平面。在3D图像学中,叉乘的概念非常有用,可以通过两个向量的叉乘,生成第三个垂直于a,b的法向量,从而构建X、Y、Z坐标系。
叉乘和点乘的运算法则:点乘,也叫向量的内积、数量积。顾名思义,求下来的结果是一个数。向量a·向量b=|a||bcos。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
区别:点乘是向量的内积 叉乘是向量的外积。点乘:点乘的结果是一个实数 a·b=|a|·|b|·cos<a,b <a,b表示a,b的夹角叉乘:叉乘的结果是一个向量
扩展资料:
在数学中,数量积(dot product; scalar product,也称为点积、点乘)是接受在实数R上的两个向量并返回一个实数值标量的二元运算。它是欧几里得空间的标准内积。乘法也可以被视为计算排列在矩形(整数)中的对象或查找其边长度给定的矩形的区域。 矩形的区域不取决于首先测量哪一侧,这说明了交换属性。 两种测量的产物是一种新型的测量,例如,将矩形的两边的长度相乘给出其面积,这是尺寸分析的主题。参考资料:
扩展资料:
在数学中,数量积(dot product; scalar product,也称为点积、点乘)是接受在实数R上的两个向量并返回一个实数值标量的二元运算。它是欧几里得空间的标准内积。乘法也可以被视为计算排列在矩形(整数)中的对象或查找其边长度给定的矩形的区域。 矩形的区域不取决于首先测量哪一侧,这说明了交换属性。 两种测量的产物是一种新型的测量,例如,将矩形的两边的长度相乘给出其面积,这是尺寸分析的主题。参考资料:
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
和叉乘的区别如下:一、符号不同。
点乘:点乘的符号用“ · ”表示。叉乘:叉乘的符号用“ × ”表示。二、两者的应用范围不同:1、点乘的应用范围:。2、叉乘的应用范围:其应用也十分广泛,通常应用于物理学光学和计算机图形学中。三、计算过程不同。点乘:点乘是两个的乘积再乘上两个向量夹角的值。叉乘:叉乘是两个矢量的模的乘积再乘上这两个向量夹角的正弦值。点积在数学中,又称数量积(dot product; scalar product),是指接受在实数R上的两个向量并返回一个实数值标量的二元运算。它是欧几里得空间的标准。两个向量a = [a1, a2,…, an]和b = [b1, b2,…, bn]的点积定义为:a·b=a1b1+a2b2+……+anbn。使用并把(纵列)向量当作n×1 矩阵,点积还可以写为:a·b=(a^T)*b,这里的a^T指示矩阵a的转置。
点乘:点乘的符号用“ · ”表示。叉乘:叉乘的符号用“ × ”表示。二、两者的应用范围不同:1、点乘的应用范围:。2、叉乘的应用范围:其应用也十分广泛,通常应用于物理学光学和计算机图形学中。三、计算过程不同。点乘:点乘是两个的乘积再乘上两个向量夹角的值。叉乘:叉乘是两个矢量的模的乘积再乘上这两个向量夹角的正弦值。点积在数学中,又称数量积(dot product; scalar product),是指接受在实数R上的两个向量并返回一个实数值标量的二元运算。它是欧几里得空间的标准。两个向量a = [a1, a2,…, an]和b = [b1, b2,…, bn]的点积定义为:a·b=a1b1+a2b2+……+anbn。使用并把(纵列)向量当作n×1 矩阵,点积还可以写为:a·b=(a^T)*b,这里的a^T指示矩阵a的转置。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
如下:a向量点积b向量,结果是个数,等于abcos<a,b>,<a,b>是a向量与b向量的夹角。a向量叉积b向量,结果是个向量,模等于absin<a,b>,方向与a向量和b向量所在平面垂直,并且遵守右手法则,a握向b,拇指方向就是叉积向量方向。点积的值:u的大小、v的大小、u,v夹角的余弦。在u,v非零的前提下,点积如果为负,则u,v形成的角大于90度;如果为零,那么u,v垂直;如果为正,那么u,v形成的角为锐角。两个单位向量的点积得到两个向量的夹角的cos值,通过它可以知道两个向量的相似性,利用点积可判断一个多边形是面向摄像机还是背向摄像机。向量的点积与它们夹角的余弦成正比,因此在聚光灯的效果计算中,可以根据点积来得到光照效果,如果点积越大,说明夹角越小,则物体离光照的轴线越近,光照越强。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询