连续和极限存在的关系

 我来答
lshijiazhuang
2023-05-27 · 超过19用户采纳过TA的回答
知道答主
回答量:122
采纳率:0%
帮助的人:2.3万
展开全部

有极限不一定连续,但是连续一定有极限。一个函数连续必须有两个条件:一是在此处有定义,二是在此区间内要有极限。因此,也可以说函数有极限是函数连续的必要不充分条件。

函数极限是高等数学最基本的概念之一,导数等概念都是在函数极限的定义上完成的。函数极限性质的合理运用。常用的函数极限的性质有函数极限的唯一性、局部有界性、保序性以及函数极限的运算法则和复合函数的极限等。

在函数极限的定义中曾经强调过,当x→x0时f(x)有没有极限,与f(x)在点x0处是否有定义并无关系。但由于现在函数在x0处连续,则表示f(x0)必定存在,显然当Δx=0(即x=x0)时Δy=0<ε。于是上述推导过程中可以取消0<|Δx|这个条件。

若函数在某点连续,则函数在该点的极限就等于在该点的函数值

有极限不一定连续,但是连续一定有极限.一个函数连续必须有两个条件:一个是在此处有定义,另外一个是在此区间内要有极限.因此说函数有极限是函数连续的必要不充分条件.

左右极限相等且=f(x0)

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式