函数与函数项级数是什么关系?

 我来答
情感导师九九
高能答主

2023-06-28 · 人生如逆旅,你我亦行人!
情感导师九九
采纳数:370 获赞数:44432

向TA提问 私信TA
展开全部

函数列:指各项为具有相同定义域的函数的序列

函数项级数:在数学中,一个有穷或无穷的序列的元素的形式和称为级数。序列中的项称作级数的通项。级数的通项可以是实数,矩阵或向量等常量,也可以是关于其他变量的函数,不一定是一个数。如果级数的通项是常量,则称之为常数项级数,如果级数的通项是函数,则称之为函数项级数。

区别:函数列实质就是一列函数,而函数项级数是一列函数的求和。

联系:对函数列的求和就是函数项级数,而把函数项级数的每一项拿出来组成的一列函数,就是函数列。


扩展资料:

函数发展历史:

1,函数的由来

(1)中文数学书上使用的“函数”一词是转译词。是我国清代数学家李善兰在翻译《代数学》(1859年)一书时,把“function”译成“函数”的。

(2)中国古代“函”字与“含”字通用,都有着“包含”的意思。李善兰给出的定义是:“凡式中含天,为天之函数。”中国古代用天、地、人、物4个字来表示4个不同的未知数或变量。这个定义的含义是:“凡是公式中含有变量x,则该式子叫做x的函数。”所以“函数”是指公式里含有变量的意思。


2,早期概念

(1)1637年前后笛卡尔在他的解析几何中,已注意到一个变量对另一个变量的依赖关系,但因当时尚未意识到要提炼函数概念,因此直到17世纪后期牛顿,莱布尼兹建立微积分时还没有人明确函数的一般意义,大部分函数是被当作曲线来研究的。

(2)1673年,莱布尼兹首次使用“function”(函数)表示“幂”,后来他用该词表示曲线上点的横坐标,纵坐标,切线长等曲线上点的有关几何量。与此同时,牛顿在微积分的讨论中,使用 “流量”来表示变量间的关系。


3,十八世纪

(1)1718年约翰·柏努利在莱布尼兹函数概念的基础上对函数概念进行了定义:“由任一变量和常数的任一形式所构成的量。”他的意思是凡变量x和常量构成的式子都叫做x的函数,并强调函数要用公式来表示。

(2)1748年,欧拉在其《无穷分析引论》一书中把函数定义为:“一个变量的函数是由该变量的一些数或常量与任何一种方式构成的解析表达式。”他把约翰·贝努利给出的函数定义称为解析函数,并进一步把它区分为代数函数和超越函数,还考虑了“随意函数”。

(3)1755年,欧拉给出了另一个定义:“如果某些变量,以某一种方式依赖于另一些变量,即当后面这些变量变化时,前面这些变量也随着变化,我们把前面的变量称为后面变量的函数。”


4,十九世纪

(1)1821年,柯西从定义变量起给出了定义:“在某些变数间存在着一定的关系,当一经给定其中某一变数的值,其他变数的值可随着而确定时,则将最初的变数叫自变量,其他各变数叫做函数。”在柯西的定义中,首先出现了自变量一词,同时指出对函数来说不一定要有解析表达式。

(2)1822年傅里叶发现某些函数可以用曲线表示,也可以用一个式子表示,或用多个式子表示,从而结束了函数概念是否以唯一一个式子表示的争论,把对函数的认识又推进了一个新层次。

(3)等到康托创立的集合论在数学中占有重要地位之后,奥斯瓦尔德维布伦用“集合”和“对应”的概念给出了近代函数定义,通过集合概念把函数的对应关系、定义域及值域进一步具体化了,且打破了“变量是数”的极限,变量可以是数,也可以是其它对象。


5,现代概念

(1)1914年豪斯道夫(F Hausdorff)在《集合论纲要》中用不明确的概念“序偶”来定义函数,其避开了意义不明确的“变量”,“对应”概念。库拉托夫斯基(Kuratowski)于1921年用集合概念来定义“序偶”使豪斯道夫的定义很严谨了。

(2)1930 年新的现代函数定义为“若对集合M的任意元素x,总有集合N确定的元素y与之对应,则称在集合M上定义一个函数,记为f元素x称为自变量,元素y称为因变量”。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式