什么是矩阵的行初等变换?
1个回答
展开全部
对调两行;以非零数k乘以某一行的所有元素;把某一行所有元素的k倍加到另一行对应元素上去。
下列三种变换称为矩阵的行初等变换:
(1)对调两行;
(2)以非零数k乘以某一行的所有元素;
(3)把某一行所有元素的k倍加到另一行对应元素上去。
行最简形矩阵是由方程组唯一确定的,行阶梯形矩阵的行数也是由方程组唯一确定的。
将定义中的“行”换成“列”,即得到矩阵的初等列变换的定义。矩阵的初等行变换与矩阵的初等列变换,统称为矩阵的初等变换。
扩展资料:
将矩阵化简为行最简形矩阵的定理:
1、任一矩阵可经过有限次初等行变换化成阶梯形矩阵;
2、任一矩阵可经过有限次初等行变换化成行最简形矩阵;
矩阵在经过初等行变换化为最简形矩阵后,再经过初等列变换,还可以化为最简形矩阵,因此,任一矩阵可经过有限次初等变换化成标准形矩阵。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询