解一元二次方程的四种方法
解一元二次方程的方法介绍如下:
1.直接开平方法:⑴形如x²=p或者(nx+m)²=p(p≥0)的一元二次方程可采用直接开平方法求根;⑵如果方程能化成x²=p的形式,那么可得x=±√p;⑶如果方程能化成(nx+m)²=p(p≥0)的形式,那么nx+m=±√p,进而得出方程的根;⑷注意:等号左边是一个数的平方形式而右边是一个常数;
2.配方法:将一元二次方程配成(x+m)²=n的形式,再利用直接开平方法求根.用配方法解一元二次方程的步骤 ⑴把原方程化为一般形式ax²+bx+c=0(a≠0);⑵方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边;
⑶方程两边同时加上一次项系数一半的平方;⑷把左边配成一个完全平方式,右边化为一个常数;⑸如果右边是非负数,则方程有两个实数根,用直接开平方法求解;如果右边是一个负数,则方程无实数根;
3.因式分解法一般步骤:⑴移项,使方程右边为零;⑵将方程的左边转化为两个一元一次多项式的积;⑶令每个因式分别为零;⑷解两个一元一次方程;
举例:x²-5x+6=0因式分解,得(x-2)(x-3)=0即x-2=0或x-3=0∴x1=2,x2=3;
4.公式法求根公式:求根公式
5.说明:一元二次方程有两个实数根或者没有实数根,绝对不存在一个实数根;如果方程有实数根,配方法和公式法都能解;直接开平方法要求方程必须是左平方右常数形式;因式分解法要求左边必须能分解因式为A•B=0即两个因式相乘为0,因式分解法的理论依据为:“如果两个因式的乘积为零,那么至少有一个因式为零”。