若非零函数f(x)对任意实数a,b均有f(a+b)=f(a)乘f(b),且当x大于零时,f(x)大于1

若非零函数f(x)对任意实数a,b均有f(a+b)=f(a)乘f(b),且当x大于零时,f(x)大于1(1)求证:f(x)大于零,(2)求证f(x)为减函数(3)当f(4... 若非零函数f(x)对任意实数a,b均有f(a+b)=f(a)乘f(b),且当x大于零时,f(x)大于1

(1)求证:f(x)大于零,(2)求证f(x)为减函数
(3)当f(4)=1/16时,解不等式f(x-3)乘f(5)小于或等于1/4 要详细过程过程一定一定要极其极其详细
展开
超28929315
2010-10-17 · TA获得超过129个赞
知道答主
回答量:21
采纳率:0%
帮助的人:12.2万
展开全部
方法1(1)由f(a+b)=f(a).f(b),得f(2a)=[f(a)]^2,令x=2a,则f(x)>=0.
又f(x)是非零函数,所以f(x)>0
(2)f(x+a)=f(x)f(a),f(x)=f(x+a)/f(a)
当x<0时,有x+a<a,f(x)=f(x+a)/f(a)>1,即f(x+a)>f(a),所以,f(x)为减函数。
(3)f(x-3).f(5-x^2)=f(x-3+5-x^2)=f(-x^2+x+2)
原不等式化为:f(-x^2+x+2)≤1/4,两边平方,[f(-x^2+x+2)]^2≤1/16
f[2(-x^2+x+2)]≤1/16
因f(x)为减函数,f(4)=1/16,则有2(-x^2+x+2)>=4,-x^2+x>=0
解得:0≤x≤1

方法2.因为f(a+b)=f(a)f(b),令式中a=b=0得:f(0)=f(0)*f(0),因f(0)不等于0,所以等式两同时消去f(0),得:f(0)=1。
2.令f(a+b)=f(a)f(b)中a=b=x/2,于是f(x)=f(0.5x)*f(0.5x)=(f(0.5x))^2>=0。因为是非零函数,所以对于任意x都有f(x)不等于0,所以f(x)>0。
3.设x1<x2,因为对任意的x属于R,恒有f(x)>0,所以f(x1)/f(x2)=f(x1+x2-x2)/f(x2)=(f(x1-x2)*f(x2))/f(x2),分子分母同时约去f(x2),得:f(x1)/f(x2)=f(x1-x2),因为x1<x2,所以x1-x2<0,所以f(x1-x2)>1,所以f(x1)/f(x2)>1,所以f(x)是R上的减函数。

参考资料: 超哥
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式