几道关于初一有理数的难题!!!
3个回答
展开全部
1. -2的2009次方+(-2)的2010次方
思路:负数的奇数次方仍然为负数,负数的偶数次方为偶数
(-2)的2009次方=-(2的2009次方)
(-2)的2010次方=2×2的2009次方
(-2)^2009 +(-2)^2010
= - 2^2009 + 2^2010
= - 2^2009 + (2^2009)×2
(这一步明白吗?2^2010即2的2009次方乘2的一次放,所以底数不变指数相加等于2010)
= 2^2009的(-1 + 2)次方
(这一步是根据幂的加减法,然后提取公因式2^2009)
最后结果= 2^2009
分析:这道题考查的是“同底数幂相乘,底数不变,指数相加”的活用。
-2的2010次方
=-2的2009次方×(-2)的1次方
-2的2009次方+ -2的2010次方 就变为:
-2的2009次方+ -2的2009次方×(-2)的1次方
提公因式-2的2009次方后:
-2的2009次方×(1-2)
=2的2009次方
2. 若xyxw为整数,且x>y>z>W,2的x次方加2的y次方加2的z次方加2的w次方等于20.625,求(x+y+z+w-1)的2010次方的值?
20.625=16+4+0.5+0.125,由此可得,x=4,y=2,z=-1,w=-3,所以x+y+z+w-1=1,所以(x+y+z+w-1)的2010次方=1
加油!
思路:负数的奇数次方仍然为负数,负数的偶数次方为偶数
(-2)的2009次方=-(2的2009次方)
(-2)的2010次方=2×2的2009次方
(-2)^2009 +(-2)^2010
= - 2^2009 + 2^2010
= - 2^2009 + (2^2009)×2
(这一步明白吗?2^2010即2的2009次方乘2的一次放,所以底数不变指数相加等于2010)
= 2^2009的(-1 + 2)次方
(这一步是根据幂的加减法,然后提取公因式2^2009)
最后结果= 2^2009
分析:这道题考查的是“同底数幂相乘,底数不变,指数相加”的活用。
-2的2010次方
=-2的2009次方×(-2)的1次方
-2的2009次方+ -2的2010次方 就变为:
-2的2009次方+ -2的2009次方×(-2)的1次方
提公因式-2的2009次方后:
-2的2009次方×(1-2)
=2的2009次方
2. 若xyxw为整数,且x>y>z>W,2的x次方加2的y次方加2的z次方加2的w次方等于20.625,求(x+y+z+w-1)的2010次方的值?
20.625=16+4+0.5+0.125,由此可得,x=4,y=2,z=-1,w=-3,所以x+y+z+w-1=1,所以(x+y+z+w-1)的2010次方=1
加油!
展开全部
(1)1*3分之一加上3*5分之一加上5*7分之一加上.........2001*2003分之一等于几
解:1/(1*3)=(1-1/3)*1/2
1/(3*5)=(1/3-1/5)*1/2
......
1/(2001*2003)=(1/2001-1/2003)*1/2
原式
=1/2*(1-1/3+1/3-1/5+...+1/2001-1/2003)
=1/2*(1-1/2003)
=1/2*2002/2003
=1001/2003
(2)1-2分之一的绝对值加上2分之一-3分之一的绝对值加上3分之一-4分之一绝对值加上...........999分之一-1000分之一的绝对值
解:|1-1/2|+|1/2-1/3|+...+|1/999-1/1000|
=1-1/2+1/2-1/3+...+1/999-1/1000
=1-1/1000
=999/1000
解:1/(1*3)=(1-1/3)*1/2
1/(3*5)=(1/3-1/5)*1/2
......
1/(2001*2003)=(1/2001-1/2003)*1/2
原式
=1/2*(1-1/3+1/3-1/5+...+1/2001-1/2003)
=1/2*(1-1/2003)
=1/2*2002/2003
=1001/2003
(2)1-2分之一的绝对值加上2分之一-3分之一的绝对值加上3分之一-4分之一绝对值加上...........999分之一-1000分之一的绝对值
解:|1-1/2|+|1/2-1/3|+...+|1/999-1/1000|
=1-1/2+1/2-1/3+...+1/999-1/1000
=1-1/1000
=999/1000
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2010-10-16
展开全部
-222+(-555)
563+(-3334)
-777
-2771
563+(-3334)
-777
-2771
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询