1个回答
展开全部
y = (sinx)^4 + (cosx)^4 = [(sinx)^2 + (cosx)^2]^2 - 2(sinxcosx)^2
= 1 - 2(sinxcosx)^2
= 1 - 1/2 (sin2x)^2
= 1 - 1/4 (1-cos4x)
= 3/4 + (cos4x)/4
n≥1:
y(n) = [ 3/4 + (cos4x)/4 ](n)
=[ 3/4 ](n) + 1/4 [ (cos4x)(n) ]
= 1/4 [ 4^n cos(4x+ nπ/2)]
= 4^(n-1) cos(4x+ nπ/2)
= 1 - 2(sinxcosx)^2
= 1 - 1/2 (sin2x)^2
= 1 - 1/4 (1-cos4x)
= 3/4 + (cos4x)/4
n≥1:
y(n) = [ 3/4 + (cos4x)/4 ](n)
=[ 3/4 ](n) + 1/4 [ (cos4x)(n) ]
= 1/4 [ 4^n cos(4x+ nπ/2)]
= 4^(n-1) cos(4x+ nπ/2)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |