已知如图在RT△ABC中,AB=AC,角A=90°,点D为BC上任意一点,DF⊥AB于F,DE⊥AC于点E,M为BC的中点,试判断 20
已知如图在RT△ABC中,AB=AC,角A=90°,点D为BC上任意一点,DF⊥AB于F,DE⊥AC于点E,M为BC的中点,试判断△MEF的形状...
已知如图在RT△ABC中,AB=AC,角A=90°,点D为BC上任意一点,DF⊥AB于F,DE⊥AC于点E,M为BC的中点,试判断△MEF的形状
展开
展开全部
证明:连结AM
∵∠BAC=90°,AB=AC,M是BC的中点
∴AM =BM,∠BAM=∠CAM=45°,AM⊥BC
∵DF⊥AB,DE⊥AC,∠BAC=90°
∴四边形AFDE是矩形,∴DF=AE
∵DF⊥AB,∠B=45°,∴∠FDB=45°=∠B
∴BF=DF,∴BF=AE
在△BFM和△AEM中
∴FM=EM,∠BMF=∠AME
∴AM⊥BC,∴∠BMF+∠AMF=90°
∴∠AME+∠AMF=∠EMF=90°
∴△MEF是等腰直角三角形。
望采纳!
∵∠BAC=90°,AB=AC,M是BC的中点
∴AM =BM,∠BAM=∠CAM=45°,AM⊥BC
∵DF⊥AB,DE⊥AC,∠BAC=90°
∴四边形AFDE是矩形,∴DF=AE
∵DF⊥AB,∠B=45°,∴∠FDB=45°=∠B
∴BF=DF,∴BF=AE
在△BFM和△AEM中
∴FM=EM,∠BMF=∠AME
∴AM⊥BC,∴∠BMF+∠AMF=90°
∴∠AME+∠AMF=∠EMF=90°
∴△MEF是等腰直角三角形。
望采纳!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
证明:连结AM
∵∠BAC=90°,AB=AC,M是BC的中点
∴AM =BM,∠BAM=∠CAM=45°,AM⊥BC
∵DF⊥AB,DE⊥AC,∠BAC=90°
∴四边形AFDE是矩形,∴DF=AE
∵DF⊥AB,∠B=45°,∴∠FDB=45°=∠B
∴BF=DF,∴BF=AE
在△BFM和△AEM中
∴FM=EM,∠BMF=∠AME
∴AM⊥BC,∴∠BMF+∠AMF=90°
∴∠AME+∠AMF=∠EMF=90°
∴△MEF是等腰直角三角形。
∵∠BAC=90°,AB=AC,M是BC的中点
∴AM =BM,∠BAM=∠CAM=45°,AM⊥BC
∵DF⊥AB,DE⊥AC,∠BAC=90°
∴四边形AFDE是矩形,∴DF=AE
∵DF⊥AB,∠B=45°,∴∠FDB=45°=∠B
∴BF=DF,∴BF=AE
在△BFM和△AEM中
∴FM=EM,∠BMF=∠AME
∴AM⊥BC,∴∠BMF+∠AMF=90°
∴∠AME+∠AMF=∠EMF=90°
∴△MEF是等腰直角三角形。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
证明:连结AM
∵∠BAC=90°,AB=AC,M是BC的中点
∴AM =BM,∠BAM=∠CAM=45°,AM⊥BC
∵DF⊥AB,DE⊥AC,∠BAC=90°
∴四边形AFDE是矩形,∴DF=AE
∵DF⊥AB,∠B=45°,∴∠FDB=45°=∠B
∴BF=DF,∴BF=AE
在△BFM和△AEM中
∴FM=EM,∠BMF=∠AME
∴AM⊥BC,∴∠BMF+∠AMF=90°
∴∠AME+∠AMF=∠EMF=90°
∴△MEF是等腰直角三角形。
望采纳!
∵∠BAC=90°,AB=AC,M是BC的中点
∴AM =BM,∠BAM=∠CAM=45°,AM⊥BC
∵DF⊥AB,DE⊥AC,∠BAC=90°
∴四边形AFDE是矩形,∴DF=AE
∵DF⊥AB,∠B=45°,∴∠FDB=45°=∠B
∴BF=DF,∴BF=AE
在△BFM和△AEM中
∴FM=EM,∠BMF=∠AME
∴AM⊥BC,∴∠BMF+∠AMF=90°
∴∠AME+∠AMF=∠EMF=90°
∴△MEF是等腰直角三角形。
望采纳!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询