如图,在△ABC中,AB=AC,D、E分别在AC、AB边上,BD=BC,AD=DE=BE。求∠A的度数
展开全部
解:
∵AB=AC,AD=DE,ED=EB,BD=BC
∴∠ABC=∠C,∠A=∠AED,∠EBD=∠EDB,∠BDC=∠C(等边对等角)
设∠A=2x°,则∠AED=2x°
∵在△AED中,∠AED是外角
∴∠AED=∠EBD+∠EDB(三角形的一个外角等于和它不相邻的两个内角的和)
∴∠EBD=∠EDB=x°
∵在△ABD中,∠BDC是外角
∴∠BDC=∠EBD+∠A(三角形的一个外角等于和它不相邻的两个内角的和)
∴∠BDC=3x°
∴∠C=3x°
∴∠ABC=3x°
∵在△ABC中,∠A+∠C+∠ABC=180°
∴2x°+3x°+3x°=180°(三角形三个内角的和等于180°)
解得x=22.5°
∴∠A =2x°=45°
∵AB=AC,AD=DE,ED=EB,BD=BC
∴∠ABC=∠C,∠A=∠AED,∠EBD=∠EDB,∠BDC=∠C(等边对等角)
设∠A=2x°,则∠AED=2x°
∵在△AED中,∠AED是外角
∴∠AED=∠EBD+∠EDB(三角形的一个外角等于和它不相邻的两个内角的和)
∴∠EBD=∠EDB=x°
∵在△ABD中,∠BDC是外角
∴∠BDC=∠EBD+∠A(三角形的一个外角等于和它不相邻的两个内角的和)
∴∠BDC=3x°
∴∠C=3x°
∴∠ABC=3x°
∵在△ABC中,∠A+∠C+∠ABC=180°
∴2x°+3x°+3x°=180°(三角形三个内角的和等于180°)
解得x=22.5°
∴∠A =2x°=45°
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询