一道高中数学不等式问题求解

车工分配问题某机械厂的车工分A,B两个等级,各级车工每人每天加工能力,成品合格率及日工资数如下表所示:级别加工能力(个/人•天)成品合格率(%)工资(元/天)... 车工分配问题
某机械厂的车工分A,B两个等级,各级车工每人每天加工能力,成品合格率及日工资数如下表所示:
级别 加工能力(个/人•天) 成品合格率(%) 工资(元/天)
A 240 97 5.6
B 160 95.5 3.6
工厂要求每天至少加工配件2400个,车工每出一个废品,工厂就要损失2元,现有A级车工8人,B级车工12人,且工厂要求至少安排6名B级车工,试安排车工工作,使工厂每天支出的费用最少。
展开
 我来答
帐号已注销
2022-06-02 · TA获得超过1038个赞
知道小有建树答主
回答量:1.9万
采纳率:77%
帮助的人:509万
展开全部

高中数学合集百度网盘下载

链接:https://pan.baidu.com/s/1znmI8mJTas01m1m03zCRfQ

?pwd=1234

提取码:1234

简介:高中数学优质资料下载,包括:试题试卷、课件、教材、视频、各大名师网校合集。

百度网友d495093
2010-10-20 · TA获得超过237个赞
知道答主
回答量:21
采纳率:0%
帮助的人:34.5万
展开全部
这属于线性规划的题。
首先设加工A的工人有x名,加工b的工人有y名
由题意可得:
97%*240x+95.5%*160y≥2400
x≤8
12≥y≥6

在x-y直角坐标系中做出可行域
目标函数T=5.6x+3.6y+(3%*240x+4.5%*160y)*2
然后求出T的最小值即可(注意xy的取值必需为正整数)
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
troublebottle
2010-10-26 · TA获得超过228个赞
知道小有建树答主
回答量:148
采纳率:0%
帮助的人:128万
展开全部
线性规划问题。设A的有X名,B的有Y名,支出费用为S,据题意可得下列不等式:240×97%×X + 160×95.5%×Y ≥ 2400
0≤X≤8
6≤Y≤12
且X,Y∈N
在坐标系上画出可行域。
S=5.6X+3.6Y+2(3%×240X+4.5%×160Y),可用网格法求出最优解。直接计算会很麻烦。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
师之众
2010-10-17
知道答主
回答量:63
采纳率:0%
帮助的人:0
展开全部
题不全
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式