f(x)=4x^3+ax+2,曲线y=f(x),在点p(0,2)处切线的斜率为-12,求a的值;求函数f(x)在区间【-3,2】的最大

litong04120412
2010-10-16 · 超过11用户采纳过TA的回答
知道答主
回答量:30
采纳率:0%
帮助的人:28万
展开全部
由于f'(x)=12x^2+a,
所以斜率k=f'(0)=a=-12
因为f'(x)=12x^2-12=12(x^2-1),
得驻点x=-1,x=1
又因f(-3)=-70,f(-1)=10,f(1)=-6,f(2)=10
所以在区间【-3,2】的最大值为f(-1)=f(2)=10
董宗桦
2010-10-16 · TA获得超过1544个赞
知道小有建树答主
回答量:688
采纳率:0%
帮助的人:739万
展开全部
求导 f'(x)=12x^2+a
f'(0)=a=-12 所以 a=-12
函数为 f(x)=4x^3-12x+2
根据导数 f'(x)=12(x-1)(x+1)
可得函数在(-无穷,-1]是单调递增的
[-1,1]是单调递减的
[1,+无穷)是单调递增的
所以 f(-1)=-4+12=2=10
f(1)=4-12+2=-6
f(-3)=-70
f(2)=10
所以 最大值是 10 当x=2,-1时
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式