展开全部
1)f(x1)=lgx1
f(x2)=lgx2
2)[f(x1)+f(x2)]/2=(lgx1+lgx2)/2=(lgx1x2)/2
3)x=(x1+x2)/2
f[(x1+x 2)/2]=lg[(x1+x2)/2]
4)[f(x1)+f(x2)]/2-f[(x1+x 2)/2]
=(lgx1x2)/2-lg[(x1+x2)/2]
=lg[(x1x2)^1/2]-lg[(x1+x2)/2]
5)lgx为增函数,所以只需比较
(x1x2)^1/2-(x1+x2)/2<=(x1x2)^1/2-[2(x1x2)^1/2]/2<=0 (x1,x2∈(0,+∞))
6)所以[f(x1)+f(x2)]/2<=f[(x1+x 2)/2]
f(x2)=lgx2
2)[f(x1)+f(x2)]/2=(lgx1+lgx2)/2=(lgx1x2)/2
3)x=(x1+x2)/2
f[(x1+x 2)/2]=lg[(x1+x2)/2]
4)[f(x1)+f(x2)]/2-f[(x1+x 2)/2]
=(lgx1x2)/2-lg[(x1+x2)/2]
=lg[(x1x2)^1/2]-lg[(x1+x2)/2]
5)lgx为增函数,所以只需比较
(x1x2)^1/2-(x1+x2)/2<=(x1x2)^1/2-[2(x1x2)^1/2]/2<=0 (x1,x2∈(0,+∞))
6)所以[f(x1)+f(x2)]/2<=f[(x1+x 2)/2]
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询